Bernard Helffer, Ayman Kachmar, Mikael Persson Sundqvist
{"title":"Flux and symmetry effects on quantum tunneling","authors":"Bernard Helffer, Ayman Kachmar, Mikael Persson Sundqvist","doi":"10.1007/s00208-024-02874-0","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the analysis of the tunneling effect for the magnetic Laplacian, we introduce an abstract framework for the spectral reduction of a self-adjoint operator to a hermitian matrix. We illustrate this framework by three applications, firstly the electro-magnetic Laplacian with constant magnetic field and three equidistant potential wells, secondly a pure constant magnetic field and Neumann boundary condition in a smoothed triangle, and thirdly a magnetic step where the discontinuity line is a smoothed triangle. Flux effects are visible in the three aforementioned settings through the occurrence of eigenvalue crossings. Moreover, in the electro-magnetic Laplacian setting with double well radial potential, we rule out an artificial condition on the distance of the wells and extend the range of validity for the tunneling approximation recently established in Fefferman et al. (SIAM J Math Anal 54: 1105–1130, 2022), Helffer & Kachmar (Pure Appl Anal, 2024), thereby settling the problem of electro-magnetic tunneling under constant magnetic field and a sum of translated radial electric potentials.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"81 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02874-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the analysis of the tunneling effect for the magnetic Laplacian, we introduce an abstract framework for the spectral reduction of a self-adjoint operator to a hermitian matrix. We illustrate this framework by three applications, firstly the electro-magnetic Laplacian with constant magnetic field and three equidistant potential wells, secondly a pure constant magnetic field and Neumann boundary condition in a smoothed triangle, and thirdly a magnetic step where the discontinuity line is a smoothed triangle. Flux effects are visible in the three aforementioned settings through the occurrence of eigenvalue crossings. Moreover, in the electro-magnetic Laplacian setting with double well radial potential, we rule out an artificial condition on the distance of the wells and extend the range of validity for the tunneling approximation recently established in Fefferman et al. (SIAM J Math Anal 54: 1105–1130, 2022), Helffer & Kachmar (Pure Appl Anal, 2024), thereby settling the problem of electro-magnetic tunneling under constant magnetic field and a sum of translated radial electric potentials.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.