Distance signless Laplacian spectral radius for the existence of path-factors in graphs

Pub Date : 2024-05-06 DOI:10.1007/s00010-024-01075-z
Sizhong Zhou, Zhiren Sun, Hongxia Liu
{"title":"Distance signless Laplacian spectral radius for the existence of path-factors in graphs","authors":"Sizhong Zhou,&nbsp;Zhiren Sun,&nbsp;Hongxia Liu","doi":"10.1007/s00010-024-01075-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a connected graph of order <i>n</i>, where <i>n</i> is a positive integer. A spanning subgraph <i>F</i> of <i>G</i> is called a path-factor if every component of <i>F</i> is a path of order at least 2. A <span>\\(P_{\\ge k}\\)</span>-factor means a path-factor in which every component admits order at least <i>k</i> (<span>\\(k\\ge 2\\)</span>). The distance matrix <span>\\({\\mathcal {D}}(G)\\)</span> of <i>G</i> is an <span>\\(n\\times n\\)</span> real symmetric matrix whose (<i>i</i>, <i>j</i>)-entry is the distance between the vertices <span>\\(v_i\\)</span> and <span>\\(v_j\\)</span>. The distance signless Laplacian matrix <span>\\({\\mathcal {Q}}(G)\\)</span> of <i>G</i> is defined by <span>\\({\\mathcal {Q}}(G)=Tr(G)+{\\mathcal {D}}(G)\\)</span>, where <i>Tr</i>(<i>G</i>) is the diagonal matrix of the vertex transmissions in <i>G</i>. The largest eigenvalue <span>\\(\\eta _1(G)\\)</span> of <span>\\({\\mathcal {Q}}(G)\\)</span> is called the distance signless Laplacian spectral radius of <i>G</i>. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a <span>\\(P_{\\ge 2}\\)</span>-factor in a graph and claim that the following statements are true: (i) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n\\ge 4\\)</span> and <span>\\(n\\ne 7\\)</span> if <span>\\(\\eta _1(G)&lt;\\theta (n)\\)</span>, where <span>\\(\\theta (n)\\)</span> is the largest root of the equation <span>\\(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\\)</span>; (ii) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n=7\\)</span> if <span>\\(\\eta _1(G)&lt;\\frac{25+\\sqrt{161}}{2}\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01075-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a connected graph of order n, where n is a positive integer. A spanning subgraph F of G is called a path-factor if every component of F is a path of order at least 2. A \(P_{\ge k}\)-factor means a path-factor in which every component admits order at least k (\(k\ge 2\)). The distance matrix \({\mathcal {D}}(G)\) of G is an \(n\times n\) real symmetric matrix whose (ij)-entry is the distance between the vertices \(v_i\) and \(v_j\). The distance signless Laplacian matrix \({\mathcal {Q}}(G)\) of G is defined by \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue \(\eta _1(G)\) of \({\mathcal {Q}}(G)\) is called the distance signless Laplacian spectral radius of G. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a \(P_{\ge 2}\)-factor in a graph and claim that the following statements are true: (i) G admits a \(P_{\ge 2}\)-factor for \(n\ge 4\) and \(n\ne 7\) if \(\eta _1(G)<\theta (n)\), where \(\theta (n)\) is the largest root of the equation \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\); (ii) G admits a \(P_{\ge 2}\)-factor for \(n=7\) if \(\eta _1(G)<\frac{25+\sqrt{161}}{2}\).

分享
查看原文
图中路径因子存在的无符号拉普拉斯谱半径距离
设 G 是阶数为 n 的连通图,其中 n 为正整数。如果 F 的每个分量都是阶数至少为 2 的路径,那么 G 的一个遍历子图 F 称为路径因子。路径因子指的是每个分量的阶数至少为 k 的路径因子(\(k\ge 2\))。G的距离矩阵\({\mathcal {D}}(G)\) 是一个 \(n\times n\) 实对称矩阵,其(i, j)项是顶点\(v_i\) 和 \(v_j\)之间的距离。G 的距离无符号拉普拉斯矩阵({\mathcal {Q}}(G)\) 由 \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\) 定义,其中 Tr(G) 是 G 中顶点传输的对角矩阵。\({\mathcal {Q}}(G)\) 的最大特征值 \(eta _1(G)\) 被称为 G 的无符号拉普拉斯谱半径。本文旨在提出一个无距离符号的拉普拉斯谱半径条件,以保证图中存在一个 (P_{\ge 2}\)因子,并声称以下陈述为真:(i) 如果 \(\eta _1(G)<;\其中 \(\theta (n)\) 是方程 \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\) 的最大根;(ii) 如果(\eta _1(G)<\frac{25+\sqrt{161}}{2}\),那么 G 对于(n=7)有一个(P_{ge 2}\)因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信