{"title":"Distance signless Laplacian spectral radius for the existence of path-factors in graphs","authors":"Sizhong Zhou, Zhiren Sun, Hongxia Liu","doi":"10.1007/s00010-024-01075-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a connected graph of order <i>n</i>, where <i>n</i> is a positive integer. A spanning subgraph <i>F</i> of <i>G</i> is called a path-factor if every component of <i>F</i> is a path of order at least 2. A <span>\\(P_{\\ge k}\\)</span>-factor means a path-factor in which every component admits order at least <i>k</i> (<span>\\(k\\ge 2\\)</span>). The distance matrix <span>\\({\\mathcal {D}}(G)\\)</span> of <i>G</i> is an <span>\\(n\\times n\\)</span> real symmetric matrix whose (<i>i</i>, <i>j</i>)-entry is the distance between the vertices <span>\\(v_i\\)</span> and <span>\\(v_j\\)</span>. The distance signless Laplacian matrix <span>\\({\\mathcal {Q}}(G)\\)</span> of <i>G</i> is defined by <span>\\({\\mathcal {Q}}(G)=Tr(G)+{\\mathcal {D}}(G)\\)</span>, where <i>Tr</i>(<i>G</i>) is the diagonal matrix of the vertex transmissions in <i>G</i>. The largest eigenvalue <span>\\(\\eta _1(G)\\)</span> of <span>\\({\\mathcal {Q}}(G)\\)</span> is called the distance signless Laplacian spectral radius of <i>G</i>. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a <span>\\(P_{\\ge 2}\\)</span>-factor in a graph and claim that the following statements are true: (i) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n\\ge 4\\)</span> and <span>\\(n\\ne 7\\)</span> if <span>\\(\\eta _1(G)<\\theta (n)\\)</span>, where <span>\\(\\theta (n)\\)</span> is the largest root of the equation <span>\\(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\\)</span>; (ii) <i>G</i> admits a <span>\\(P_{\\ge 2}\\)</span>-factor for <span>\\(n=7\\)</span> if <span>\\(\\eta _1(G)<\\frac{25+\\sqrt{161}}{2}\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01075-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a connected graph of order n, where n is a positive integer. A spanning subgraph F of G is called a path-factor if every component of F is a path of order at least 2. A \(P_{\ge k}\)-factor means a path-factor in which every component admits order at least k (\(k\ge 2\)). The distance matrix \({\mathcal {D}}(G)\) of G is an \(n\times n\) real symmetric matrix whose (i, j)-entry is the distance between the vertices \(v_i\) and \(v_j\). The distance signless Laplacian matrix \({\mathcal {Q}}(G)\) of G is defined by \({\mathcal {Q}}(G)=Tr(G)+{\mathcal {D}}(G)\), where Tr(G) is the diagonal matrix of the vertex transmissions in G. The largest eigenvalue \(\eta _1(G)\) of \({\mathcal {Q}}(G)\) is called the distance signless Laplacian spectral radius of G. In this paper, we aim to present a distance signless Laplacian spectral radius condition to guarantee the existence of a \(P_{\ge 2}\)-factor in a graph and claim that the following statements are true: (i) G admits a \(P_{\ge 2}\)-factor for \(n\ge 4\) and \(n\ne 7\) if \(\eta _1(G)<\theta (n)\), where \(\theta (n)\) is the largest root of the equation \(x^{3}-(5n-3)x^{2}+(8n^{2}-23n+48)x-4n^{3}+22n^{2}-74n+80=0\); (ii) G admits a \(P_{\ge 2}\)-factor for \(n=7\) if \(\eta _1(G)<\frac{25+\sqrt{161}}{2}\).