Limiting Weak-Type Behavior of the Centered Hardy–Littlewood Maximal Function of General Measures on the Positive Real Line

IF 0.7 4区 数学 Q2 MATHEMATICS
Wu-yi Pan, Sheng-jian Li
{"title":"Limiting Weak-Type Behavior of the Centered Hardy–Littlewood Maximal Function of General Measures on the Positive Real Line","authors":"Wu-yi Pan, Sheng-jian Li","doi":"10.1007/s11785-024-01533-1","DOIUrl":null,"url":null,"abstract":"<p>Given a positive Borel measure <span>\\(\\mu \\)</span> on the one-dimensional Euclidean space <span>\\(\\textbf{R}\\)</span>, consider the centered Hardy–Littlewood maximal function <span>\\(M_\\mu \\)</span> acting on a finite positive Borel measure <span>\\(\\nu \\)</span> by </p><span>$$\\begin{aligned} M_{\\mu }\\nu (x):=\\sup _{r&gt;r_0(x)}\\frac{\\nu (B(x,r))}{\\mu (B(x,r))},\\quad \\hbox { }\\ x\\in \\textbf{R}, \\end{aligned}$$</span><p>where <span>\\(r_0(x) = \\inf \\{r&gt; 0: \\mu (B(x,r)) &gt; 0\\}\\)</span> and <i>B</i>(<i>x</i>, <i>r</i>) denotes the closed ball with centre <i>x</i> and radius <span>\\(r &gt; 0\\)</span>. In this note, we restrict our attention to Radon measures <span>\\(\\mu \\)</span> on the positive real line <span>\\([0,+\\infty )\\)</span>. We provide a complete characterization of measures having weak-type asymptotic properties for the centered maximal function. Although we don’t know whether this fact can be extended to measures on the entire real line <span>\\(\\textbf{R}\\)</span>, we examine some criteria for the existence of the weak-type asymptotic properties for <span>\\(M_\\mu \\)</span> on <span>\\(\\textbf{R}\\)</span>. We also discuss further properties, and compute the value of the relevant asymptotic quantity for several examples of measures.\n</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01533-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a positive Borel measure \(\mu \) on the one-dimensional Euclidean space \(\textbf{R}\), consider the centered Hardy–Littlewood maximal function \(M_\mu \) acting on a finite positive Borel measure \(\nu \) by

$$\begin{aligned} M_{\mu }\nu (x):=\sup _{r>r_0(x)}\frac{\nu (B(x,r))}{\mu (B(x,r))},\quad \hbox { }\ x\in \textbf{R}, \end{aligned}$$

where \(r_0(x) = \inf \{r> 0: \mu (B(x,r)) > 0\}\) and B(xr) denotes the closed ball with centre x and radius \(r > 0\). In this note, we restrict our attention to Radon measures \(\mu \) on the positive real line \([0,+\infty )\). We provide a complete characterization of measures having weak-type asymptotic properties for the centered maximal function. Although we don’t know whether this fact can be extended to measures on the entire real line \(\textbf{R}\), we examine some criteria for the existence of the weak-type asymptotic properties for \(M_\mu \) on \(\textbf{R}\). We also discuss further properties, and compute the value of the relevant asymptotic quantity for several examples of measures.

正实线上一般度量的居中哈代-利特尔伍德最大函数的极限弱类型行为
给定一维欧几里得空间 \(textbf{R}\)上的正伯乐度量 \(\mu\),考虑作用于有限正伯乐度量 \(\nu\)的居中哈代-利特尔伍德最大函数 \(M_\mu\),其值为 $$\begin{aligned}M_{\mu }\nu (x):=\sup _{r>r_0(x)}\frac{nu (B(x,r))}{\mu (B(x,r))},\quad \hbox { }\xin \textbf{R}, \end{aligned}$$其中 \(r_0(x) = \inf \{r> 0:\),B(x, r) 表示以 x 为中心、以 \(r > 0\) 为半径的闭合球。在本文中,我们将注意力限制在正实线\([0,+\infty )\)上的拉顿度量(Radon measures \(\mu \))。我们提供了对居中最大函数具有弱型渐近性质的度量的完整描述。尽管我们不知道这一事实是否可以扩展到整个实线 \(\textbf{R}\)上的度量,但我们研究了一些关于 \(M_\mu \) 在 \(\textbf{R}\)上的弱型渐近性质存在的标准。我们还讨论了进一步的性质,并计算了几个度量实例的相关渐近量的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信