Jonathan Boisclair, Ali Amamou, Sousso Kelouwani, M. Zeshan Alam, Hedi Oueslati, Lotfi Zeghmi, Kodjo Agbossou
{"title":"A tree-based approach for visible and thermal sensor fusion in winter autonomous driving","authors":"Jonathan Boisclair, Ali Amamou, Sousso Kelouwani, M. Zeshan Alam, Hedi Oueslati, Lotfi Zeghmi, Kodjo Agbossou","doi":"10.1007/s00138-024-01546-y","DOIUrl":null,"url":null,"abstract":"<p>Research on autonomous vehicles has been at a peak recently. One of the most researched aspects is the performance degradation of sensors in harsh weather conditions such as rain, snow, fog, and hail. This work addresses this performance degradation by fusing multiple sensor modalities inside the neural network used for detection. The proposed fusion method removes the pre-process fusion stage. It directly produces detection boxes from numerous images. It reduces the computation cost by providing detection and fusion simultaneously. By separating the network during the initial layers, the network can easily be modified for new sensors. Intra-network fusion improves robustness to missing inputs and applies to all compatible types of inputs while reducing the peak computing cost by using a valley-fill algorithm. Our experiments demonstrate that adopting a parallel multimodal network to fuse thermal images in the network improves object detection during difficult weather conditions such as harsh winters by up to 5% mAP while reducing dataset bias during complicated weather conditions. It also happens with around 50% fewer parameters than late-fusion approaches, which duplicate the whole network instead of the first section of the feature extractor.\n</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"4 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01546-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Research on autonomous vehicles has been at a peak recently. One of the most researched aspects is the performance degradation of sensors in harsh weather conditions such as rain, snow, fog, and hail. This work addresses this performance degradation by fusing multiple sensor modalities inside the neural network used for detection. The proposed fusion method removes the pre-process fusion stage. It directly produces detection boxes from numerous images. It reduces the computation cost by providing detection and fusion simultaneously. By separating the network during the initial layers, the network can easily be modified for new sensors. Intra-network fusion improves robustness to missing inputs and applies to all compatible types of inputs while reducing the peak computing cost by using a valley-fill algorithm. Our experiments demonstrate that adopting a parallel multimodal network to fuse thermal images in the network improves object detection during difficult weather conditions such as harsh winters by up to 5% mAP while reducing dataset bias during complicated weather conditions. It also happens with around 50% fewer parameters than late-fusion approaches, which duplicate the whole network instead of the first section of the feature extractor.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.