Md. Easin Arafat, Md. Wakil Ahmad, S. M. Shovan, Towhid Ul Haq, Nazrul Islam, Mufti Mahmud, M. Shamim Kaiser
{"title":"Accurate Prediction of Lysine Methylation Sites Using Evolutionary and Structural-Based Information","authors":"Md. Easin Arafat, Md. Wakil Ahmad, S. M. Shovan, Towhid Ul Haq, Nazrul Islam, Mufti Mahmud, M. Shamim Kaiser","doi":"10.1007/s12559-024-10268-2","DOIUrl":null,"url":null,"abstract":"<p>Methylation is considered one of the proteins’ most important post-translational modifications (PTM). Plasticity and cellular dynamics are among the many traits that are regulated by methylation. Currently, methylation sites are identified using experimental approaches. However, these methods are time-consuming and expensive. With the use of computer modelling, methylation sites can be identified quickly and accurately, providing valuable information for further trial and investigation. In this study, we propose a new machine-learning model called MeSEP to predict methylation sites that incorporates both evolutionary and structural-based information. To build this model, we first extract evolutionary and structural features from the PSSM and SPD2 profiles, respectively. We then employ Extreme Gradient Boosting (XGBoost) as the classification model to predict methylation sites. To address the issue of imbalanced data and bias towards negative samples, we use the SMOTETomek-based hybrid sampling method. The MeSEP was validated on an independent test set (ITS) and 10-fold cross-validation (TCV) using lysine methylation sites. The method achieved: an accuracy of 82.9% in ITS and 84.6% in TCV; precision of 0.92 in ITS and 0.94 in TCV; area under the curve values of 0.90 in ITS and 0.92 in TCV; F1 score of 0.81 in ITS and 0.83 in TCV; and MCC of 0.67 in ITS and 0.70 in TCV. MeSEP significantly outperformed previous studies found in the literature. MeSEP as a standalone toolkit and all its source codes are publicly available at https://github.com/arafatro/MeSEP.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10268-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Methylation is considered one of the proteins’ most important post-translational modifications (PTM). Plasticity and cellular dynamics are among the many traits that are regulated by methylation. Currently, methylation sites are identified using experimental approaches. However, these methods are time-consuming and expensive. With the use of computer modelling, methylation sites can be identified quickly and accurately, providing valuable information for further trial and investigation. In this study, we propose a new machine-learning model called MeSEP to predict methylation sites that incorporates both evolutionary and structural-based information. To build this model, we first extract evolutionary and structural features from the PSSM and SPD2 profiles, respectively. We then employ Extreme Gradient Boosting (XGBoost) as the classification model to predict methylation sites. To address the issue of imbalanced data and bias towards negative samples, we use the SMOTETomek-based hybrid sampling method. The MeSEP was validated on an independent test set (ITS) and 10-fold cross-validation (TCV) using lysine methylation sites. The method achieved: an accuracy of 82.9% in ITS and 84.6% in TCV; precision of 0.92 in ITS and 0.94 in TCV; area under the curve values of 0.90 in ITS and 0.92 in TCV; F1 score of 0.81 in ITS and 0.83 in TCV; and MCC of 0.67 in ITS and 0.70 in TCV. MeSEP significantly outperformed previous studies found in the literature. MeSEP as a standalone toolkit and all its source codes are publicly available at https://github.com/arafatro/MeSEP.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.