{"title":"PARALLEL PARTIAL EMULATION IN APPLICATIONS","authors":"Yingjie Gao, E Bruce Pitman","doi":"10.1615/int.j.uncertaintyquantification.2024048538","DOIUrl":null,"url":null,"abstract":"Emulators are used to approximate the output of large computer simulations.\nStatistical emulators are surrogates that, in addition to predicting the mean behavior of the system, provide an estimate of the error in that prediction.\nClassical Gaussian Stochastic Process emulators predict scalar outputs based on a modest number of input parameters.\nTo make predictions across a space-time field of input variables is not feasible using classical Gaussian process methods.\nParallel Partial Emulation is a new statistical emulator methodology that predicts a field of outputs at space-time locations, based on a set of input parameters of modest dimension.\nParallel partial emulation is constructed as a Gaussian process in parameter space, but no correlation in space/time is assumed. Thus the computational work of parallel partial emulation scales as the cube of the number of input parameters (as traditional Gaussian Process emulation) and linearly with space-time grid.\nThe behavior of Parallel Partial Emulation predictions in complex applications is not well understood.\nScientists would like to understand how predictions depend on the separation of input parameters, across the space-time outputs.\nIt is also of interest to study whether the emulator predictions inherit properties (e.g conservation) from the numerical simulator.\nThis paper studies the properties of emulator predictions, in the context of scalar and systems of partial differential equation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024048538","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Emulators are used to approximate the output of large computer simulations.
Statistical emulators are surrogates that, in addition to predicting the mean behavior of the system, provide an estimate of the error in that prediction.
Classical Gaussian Stochastic Process emulators predict scalar outputs based on a modest number of input parameters.
To make predictions across a space-time field of input variables is not feasible using classical Gaussian process methods.
Parallel Partial Emulation is a new statistical emulator methodology that predicts a field of outputs at space-time locations, based on a set of input parameters of modest dimension.
Parallel partial emulation is constructed as a Gaussian process in parameter space, but no correlation in space/time is assumed. Thus the computational work of parallel partial emulation scales as the cube of the number of input parameters (as traditional Gaussian Process emulation) and linearly with space-time grid.
The behavior of Parallel Partial Emulation predictions in complex applications is not well understood.
Scientists would like to understand how predictions depend on the separation of input parameters, across the space-time outputs.
It is also of interest to study whether the emulator predictions inherit properties (e.g conservation) from the numerical simulator.
This paper studies the properties of emulator predictions, in the context of scalar and systems of partial differential equation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.