Polar code-based secure transmission with higher message rate combining channel entropy and computational entropy

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chen An, Mengjie Huang, Xianhui Lu, Lei Bi, Weijie Li
{"title":"Polar code-based secure transmission with higher message rate combining channel entropy and computational entropy","authors":"Chen An, Mengjie Huang, Xianhui Lu, Lei Bi, Weijie Li","doi":"10.1186/s42400-024-00229-5","DOIUrl":null,"url":null,"abstract":"<p>The existing physical layer security schemes, which are based on the key generation model and the wire-tap channel model, achieve security by utilizing channel reciprocity entropy and noise entropy, respectively. In contrast, we propose a novel secure transmission framework that combines noise entropy with reciprocity entropy, achieved by inserting reciprocity entropy into the frozen bits of polar codes. Note that in real-world scenarios, when eavesdroppers employ polynomial-time attacks, the bit error rate (BER) increases due to the introduction of computational entropy. To achieve indistinguishability security, we convert the practical physical layer security metric, BER, into the average min-entropy, a widely accepted concept in cryptography. The simulation results demonstrate that the eavesdropper’s BER can be significantly increased without compromising the communication performance of the legitimate receiver. Under concrete parameters we selected, when compared to the joint scheme of physical layer key generation and one time pad, the modular semantically-secure scheme based on the wire-tap channel model, and the simple channel entropy combination scheme, our scheme achieves a message rate approximately 1.2 times, 3.8 times, and 1.4 times better, respectively. Experimental testing validates the feasibility of our scheme.</p>","PeriodicalId":36402,"journal":{"name":"Cybersecurity","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42400-024-00229-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The existing physical layer security schemes, which are based on the key generation model and the wire-tap channel model, achieve security by utilizing channel reciprocity entropy and noise entropy, respectively. In contrast, we propose a novel secure transmission framework that combines noise entropy with reciprocity entropy, achieved by inserting reciprocity entropy into the frozen bits of polar codes. Note that in real-world scenarios, when eavesdroppers employ polynomial-time attacks, the bit error rate (BER) increases due to the introduction of computational entropy. To achieve indistinguishability security, we convert the practical physical layer security metric, BER, into the average min-entropy, a widely accepted concept in cryptography. The simulation results demonstrate that the eavesdropper’s BER can be significantly increased without compromising the communication performance of the legitimate receiver. Under concrete parameters we selected, when compared to the joint scheme of physical layer key generation and one time pad, the modular semantically-secure scheme based on the wire-tap channel model, and the simple channel entropy combination scheme, our scheme achieves a message rate approximately 1.2 times, 3.8 times, and 1.4 times better, respectively. Experimental testing validates the feasibility of our scheme.

Abstract Image

基于极地编码的安全传输,结合信道熵和计算熵实现更高的信息传输速率
现有的物理层安全方案基于密钥生成模型和窃听信道模型,分别利用信道互易熵和噪声熵实现安全。相比之下,我们提出了一种新的安全传输框架,它将噪声熵与互易熵相结合,通过在极性码的冻结比特中插入互易熵来实现。需要注意的是,在现实世界中,当窃听者采用多项式时间攻击时,误码率(BER)会因计算熵的引入而增加。为了实现无差别安全性,我们将实际物理层安全指标误码率转换为平均最小熵,这是密码学中一个广为接受的概念。仿真结果表明,窃听者的误码率可以显著提高,而不会影响合法接收者的通信性能。在我们选取的具体参数下,与物理层密钥生成和一次性密码垫联合方案、基于窃听信道模型的模块化语义安全方案和简单信道熵组合方案相比,我们的方案分别实现了约 1.2 倍、3.8 倍和 1.4 倍的信息速率。实验测试验证了我们方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybersecurity
Cybersecurity Computer Science-Information Systems
CiteScore
7.30
自引率
0.00%
发文量
77
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信