{"title":"A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium","authors":"Yiyin Cao, Yin Chen, Chuangyin Dang","doi":"10.1007/s10957-024-02433-2","DOIUrl":null,"url":null,"abstract":"<p>The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"25 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02433-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.