{"title":"A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium","authors":"Yiyin Cao, Yin Chen, Chuangyin Dang","doi":"10.1007/s10957-024-02433-2","DOIUrl":null,"url":null,"abstract":"<p>The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02433-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.