A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yiyin Cao, Yin Chen, Chuangyin Dang
{"title":"A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium","authors":"Yiyin Cao, Yin Chen, Chuangyin Dang","doi":"10.1007/s10957-024-02433-2","DOIUrl":null,"url":null,"abstract":"<p>The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02433-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.

Abstract Image

选择完美平衡的逻辑数量反应平衡变体
完美均衡的概念由塞尔滕(Int J Game Theory 4:25-55, 1975)提出,是策略扰动中理性的有效表征。在我们的研究中,我们提出了一个包含扰动控制参数的修正版完全均衡。为了使信念与均衡选择概率相匹配,McKelvey 和 Palfrey(Games Econ Behav 10:6-38, 1995)建立了逻辑量子响应均衡(logistic QRE),它只能选择纳什均衡。通过引入混合策略剖面与给定正元素向量之间的线性组合,本文开发了一种用于选择完美均衡特殊版本的逻辑 QRE 变体。在这一变体的基础上,我们构建了一个包含额外变量指数函数的均衡系统。通过严格的误差约束分析,我们证明了当额外变量趋近于零时,该均衡系统的解集会导致完美均衡。因此,我们确定了通向完全均衡的平滑路径的存在,并采用了变量的指数变换来确保数值稳定性。为了进行数值比较,我们利用了平方根 QRE 的一个变体,它产生了另一条通向完全均衡的平滑路径。数值结果进一步验证了所提出的可微分路径跟踪方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信