Fractional Gamma Noise Functionals

IF 0.7 4区 数学 Q2 MATHEMATICS
Mohamed Ayadi, Anis Riahi, Mohamed Rhaima, Hamza Ghoudi
{"title":"Fractional Gamma Noise Functionals","authors":"Mohamed Ayadi, Anis Riahi, Mohamed Rhaima, Hamza Ghoudi","doi":"10.1007/s11785-024-01534-0","DOIUrl":null,"url":null,"abstract":"<p>We construct an infinite dimensional analysis with respect to non-Gaussian measures of fractional Gamma type which we call fractional Gamma noise measures. It turns out that the well-known Wick ordered polynomials in Gaussian analysis cannot be generalized to this non-Gaussian case. Instead of using generalized Appell polynomials we prove that a system of biorthogonal polynomials, called Appell system, is applicable to the fractional Gamma measures. Finally, we gives some new properties of the kernels expressed in terms of the Stirling operators of the first and second kind as well as the falling factorials in infinite dimensions and we construct the so-called fractional Gamma noise Gel’fand triple.\n</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"67 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01534-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct an infinite dimensional analysis with respect to non-Gaussian measures of fractional Gamma type which we call fractional Gamma noise measures. It turns out that the well-known Wick ordered polynomials in Gaussian analysis cannot be generalized to this non-Gaussian case. Instead of using generalized Appell polynomials we prove that a system of biorthogonal polynomials, called Appell system, is applicable to the fractional Gamma measures. Finally, we gives some new properties of the kernels expressed in terms of the Stirling operators of the first and second kind as well as the falling factorials in infinite dimensions and we construct the so-called fractional Gamma noise Gel’fand triple.

分数伽玛噪声函数
我们构建了关于分数伽玛类型的非高斯度量的无限维分析,我们称之为分数伽玛噪声度量。事实证明,高斯分析中著名的威克有序多项式无法推广到这种非高斯情况。我们没有使用广义的阿贝尔多项式,而是证明了一个双正交多项式系统(称为阿贝尔系统)适用于分数伽马测量。最后,我们给出了以第一和第二类斯特林算子表示的核的一些新特性,以及无限维度中的下降阶乘,并构建了所谓的分数伽马噪声 Gel'fand 三重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信