{"title":"On Universal Sampling Recovery in the Uniform Norm","authors":"V. N. Temlyakov","doi":"10.1134/s0081543823050139","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> It is known that results on universal sampling discretization of the square norm are useful in sparse sampling recovery with error measured in the square norm. In this paper we demonstrate how known results on universal sampling discretization of the uniform norm and recent results on universal sampling representation allow us to provide good universal methods of sampling recovery for anisotropic Sobolev and Nikol’skii classes of periodic functions of several variables. The sharpest results are obtained in the case of functions of two variables, where the Fibonacci point sets are used for recovery. </p>","PeriodicalId":54557,"journal":{"name":"Proceedings of the Steklov Institute of Mathematics","volume":"16 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Steklov Institute of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823050139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that results on universal sampling discretization of the square norm are useful in sparse sampling recovery with error measured in the square norm. In this paper we demonstrate how known results on universal sampling discretization of the uniform norm and recent results on universal sampling representation allow us to provide good universal methods of sampling recovery for anisotropic Sobolev and Nikol’skii classes of periodic functions of several variables. The sharpest results are obtained in the case of functions of two variables, where the Fibonacci point sets are used for recovery.
期刊介绍:
Proceedings of the Steklov Institute of Mathematics is a cover-to-cover translation of the Trudy Matematicheskogo Instituta imeni V.A. Steklova of the Russian Academy of Sciences. Each issue ordinarily contains either one book-length article or a collection of articles pertaining to the same topic.