On Operator Inclusions in Spaces with Vector-Valued Metrics

Pub Date : 2024-02-12 DOI:10.1134/s0081543823060196
E. A. Panasenko
{"title":"On Operator Inclusions in Spaces with Vector-Valued Metrics","authors":"E. A. Panasenko","doi":"10.1134/s0081543823060196","DOIUrl":null,"url":null,"abstract":"<p>We consider an inclusion <span>\\(\\widetilde{y}\\in F(x)\\)</span> with a multivalued mapping acting in spaces with vector-valued metrics\nwhose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution <span>\\(x\\in X\\)</span>\nand an estimate of its deviation from a given element <span>\\(x_{0}\\in X\\)</span> in a vector-valued metric are obtained. This result extends\nthe known theorems on similar operator equations and inclusions in metric spaces and in the spaces with <span>\\(n\\)</span>-dimensional metric\nto a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive,\ncompared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion\n<span>\\(\\widetilde{y}(t)\\in f(t,\\intop_{a}^{b}\\varkappa(t,s)x(s)\\,ds,x(t)),\\ \\ t\\in[a, b],\\)</span>\nwhere the function <span>\\(\\widetilde{y}\\)</span> is measurable, the mapping <span>\\(f\\)</span> satisfies the Carathéodory conditions, and the solution <span>\\(x\\)</span> is\nrequired to be only measurable (the integrability of <span>\\(x\\)</span> is not assumed).\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an inclusion \(\widetilde{y}\in F(x)\) with a multivalued mapping acting in spaces with vector-valued metrics whose values are elements of cones in Banach spaces and can be infinite. A statement about the existence of a solution \(x\in X\) and an estimate of its deviation from a given element \(x_{0}\in X\) in a vector-valued metric are obtained. This result extends the known theorems on similar operator equations and inclusions in metric spaces and in the spaces with \(n\)-dimensional metric to a more general case and, applied to particular classes of functional equations and inclusions, allows to get less restrictive, compared to known, solvability conditions as well as more precise estimates of solutions. We apply this result to the integral inclusion \(\widetilde{y}(t)\in f(t,\intop_{a}^{b}\varkappa(t,s)x(s)\,ds,x(t)),\ \ t\in[a, b],\) where the function \(\widetilde{y}\) is measurable, the mapping \(f\) satisfies the Carathéodory conditions, and the solution \(x\) is required to be only measurable (the integrability of \(x\) is not assumed).

分享
查看原文
论具有矢量值度量的空间中的算子夹杂物
我们考虑了一个具有多值映射的包含 ((\widetilde{y}\in F(x)\)),该映射作用于具有向量值度量的空间,其值是巴纳赫空间中锥形的元素,并且可以是无限的。我们得到了一个关于解 \(x\in X\) 存在性的声明,以及它与向量值度量中给定元素 \(x_{0}\in X\) 的偏差的估计值。这一结果将关于度量空间和具有 \(n\)-dimensional 度量的空间中类似的算子方程和夹杂的已知定理扩展到了更一般的情况,并应用于特定类别的函数方程和夹杂,从而可以得到比已知的可解性条件更宽松的限制以及更精确的解估计。我们将这一结果应用于积分in f(t,intop_{a}^{b}\varkappa(t,s)x(s)\,ds,x(t)),\t\in[a,b],\),其中函数\(\widetilde{y}\)是可测的、映射 \(f\) 满足 Carathéodory 条件,解 \(x\) 只要求是可测量的(不假定 \(x\) 的可整性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信