Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations

Predrag Pilipovic, Adeline Samson, Susanne Ditlevsen
{"title":"Strang Splitting for Parametric Inference in Second-order Stochastic Differential Equations","authors":"Predrag Pilipovic, Adeline Samson, Susanne Ditlevsen","doi":"arxiv-2405.03606","DOIUrl":null,"url":null,"abstract":"We address parameter estimation in second-order stochastic differential\nequations (SDEs), prevalent in physics, biology, and ecology. Second-order SDE\nis converted to a first-order system by introducing an auxiliary velocity\nvariable raising two main challenges. First, the system is hypoelliptic since\nthe noise affects only the velocity, making the Euler-Maruyama estimator\nill-conditioned. To overcome that, we propose an estimator based on the Strang\nsplitting scheme. Second, since the velocity is rarely observed we adjust the\nestimator for partial observations. We present four estimators for complete and\npartial observations, using full likelihood or only velocity marginal\nlikelihood. These estimators are intuitive, easy to implement, and\ncomputationally fast, and we prove their consistency and asymptotic normality.\nOur analysis demonstrates that using full likelihood with complete observations\nreduces the asymptotic variance of the diffusion estimator. With partial\nobservations, the asymptotic variance increases due to information loss but\nremains unaffected by the likelihood choice. However, a numerical study on the\nKramers oscillator reveals that using marginal likelihood for partial\nobservations yields less biased estimators. We apply our approach to\npaleoclimate data from the Greenland ice core and fit it to the Kramers\noscillator model, capturing transitions between metastable states reflecting\nobserved climatic conditions during glacial eras.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"238 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address parameter estimation in second-order stochastic differential equations (SDEs), prevalent in physics, biology, and ecology. Second-order SDE is converted to a first-order system by introducing an auxiliary velocity variable raising two main challenges. First, the system is hypoelliptic since the noise affects only the velocity, making the Euler-Maruyama estimator ill-conditioned. To overcome that, we propose an estimator based on the Strang splitting scheme. Second, since the velocity is rarely observed we adjust the estimator for partial observations. We present four estimators for complete and partial observations, using full likelihood or only velocity marginal likelihood. These estimators are intuitive, easy to implement, and computationally fast, and we prove their consistency and asymptotic normality. Our analysis demonstrates that using full likelihood with complete observations reduces the asymptotic variance of the diffusion estimator. With partial observations, the asymptotic variance increases due to information loss but remains unaffected by the likelihood choice. However, a numerical study on the Kramers oscillator reveals that using marginal likelihood for partial observations yields less biased estimators. We apply our approach to paleoclimate data from the Greenland ice core and fit it to the Kramers oscillator model, capturing transitions between metastable states reflecting observed climatic conditions during glacial eras.
二阶随机微分方程中参数推理的 Strang Splitting
我们探讨了物理学、生物学和生态学中常见的二阶随机微分方程(SDE)的参数估计问题。通过引入辅助速度变量,二阶微分方程被转换为一阶系统,这带来了两大挑战。首先,该系统是低椭圆的,噪声只影响速度,这使得 Euler-Maruyama 估计器缺乏条件。为了克服这一问题,我们提出了一种基于斯特朗斯分裂方案的估计器。其次,由于很少观测到速度,我们调整了部分观测的估计器。我们针对完整观测和部分观测提出了四种估计方法,分别使用完全似然法或仅使用速度边际似然法。这些估计器直观、易于实现、计算速度快,我们还证明了它们的一致性和渐近正态性。我们的分析表明,使用完全似然法进行完全观测会降低扩散估计器的渐近方差。我们的分析表明,在有部分观测数据的情况下,使用完全似然会减小扩散估计器的渐近方差;在有部分观测数据的情况下,渐近方差会因信息丢失而增大,但不受似然选择的影响。然而,对克拉默振荡器的数值研究表明,对部分观测使用边际似然法可以得到偏差较小的估计值。我们将这一方法应用于格陵兰冰芯中的大气候数据,并将其与克拉默振荡器模型进行拟合,从而捕捉到反映冰川时代气候条件的可变状态之间的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信