A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut( $$Fi_{22}$$ ) Which Has a Nontrivial Stabilizer of a Ball of Radius  $$2$$

Pub Date : 2024-02-12 DOI:10.1134/s0081543823060238
V. I. Trofimov
{"title":"A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut( $$Fi_{22}$$ ) Which Has a Nontrivial Stabilizer of a Ball of Radius  $$2$$","authors":"V. I. Trofimov","doi":"10.1134/s0081543823060238","DOIUrl":null,"url":null,"abstract":"<p>Earlier, to confirm that one of the possibilities for the structure of vertex stabilizers of graphs with projective suborbits is realizable, we announced the existence of a connected graph <span>\\(\\Gamma\\)</span> admitting a group of automorphisms <span>\\(G\\)</span> which is isomorphic to Aut<span>\\((Fi_{22})\\)</span> and has the following properties. First, the group <span>\\(G\\)</span> acts transitively on the set of vertices of <span>\\(\\Gamma\\)</span>, but intransitively on the set of <span>\\(3\\)</span>-arcs of <span>\\(\\Gamma\\)</span>. Second, the stabilizer in <span>\\(G\\)</span> of a vertex of <span>\\(\\Gamma\\)</span> induces on the neighborhood of this vertex a group <span>\\(PSL_{3}(3)\\)</span> in its natural doubly transitive action. Third, the pointwise stabilizer in <span>\\(G\\)</span> of a ball of radius 2 in <span>\\(\\Gamma\\)</span> is nontrivial. In this paper, we construct such a graph <span>\\(\\Gamma\\)</span> with <span>\\(G=\\mathrm{Aut}(\\Gamma)\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Earlier, to confirm that one of the possibilities for the structure of vertex stabilizers of graphs with projective suborbits is realizable, we announced the existence of a connected graph \(\Gamma\) admitting a group of automorphisms \(G\) which is isomorphic to Aut\((Fi_{22})\) and has the following properties. First, the group \(G\) acts transitively on the set of vertices of \(\Gamma\), but intransitively on the set of \(3\)-arcs of \(\Gamma\). Second, the stabilizer in \(G\) of a vertex of \(\Gamma\) induces on the neighborhood of this vertex a group \(PSL_{3}(3)\) in its natural doubly transitive action. Third, the pointwise stabilizer in \(G\) of a ball of radius 2 in \(\Gamma\) is nontrivial. In this paper, we construct such a graph \(\Gamma\) with \(G=\mathrm{Aut}(\Gamma)\).

分享
查看原文
具有半径为 $$2$$ 的球的非小稳定子的局部投影顶点-传递自整定群 Aut( $$Fi_{22}$$ ) 的图形
早些时候,为了证实具有投影子边的图的顶点稳定器结构的可能性之一是可实现的,我们宣布存在一个连通图 \(\Gamma\) ,它容许一个自变量群 \(G\),该群与 Aut\((Fi_{22})\) 同构,并具有以下性质。首先,群 \(G\) 在 \(\Gamma\) 的顶点集合上起传递作用,但是在 \(\Gamma\) 的 \(3\)-arcs 集合上起非传递作用。第二, \(\Gamma\) 的一个顶点在 \(G\) 中的稳定器在这个顶点的邻域上引起了一个群 \(PSL_{3}(3)\) 的自然双传递作用。第三,在 \(\Gamma\) 中半径为 2 的球在\(G\) 中的点稳定器是非微观的。在本文中,我们构建了这样一个图 (G=\mathrm{Aut}(\Gamma)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信