Breathable Wearable Electronics by 3D Liquid Diode

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dahua Shou, Jinhao Xu
{"title":"Breathable Wearable Electronics by 3D Liquid Diode","authors":"Dahua Shou,&nbsp;Jinhao Xu","doi":"10.1007/s42765-024-00428-2","DOIUrl":null,"url":null,"abstract":"<div><p>Wearable electronics, poised to revolutionize real-time health monitoring, encounter significant challenges due to sweat accumulation, including skin irritation, peeling, short circuits, and corrosion. A groundbreaking study published in Nature presents a sustainable solution: three-dimensional (3D) liquid diodes that effectively pump sweat away, thereby maintaining the wearables’ breathability and stable sensing of biometrics or environments without getting messed up by perspiration. This advancement has immense potential for the development of comfortable and skin-friendly intelligent wearable technologies that seamlessly incorporate sophisticated electronics even in sweaty conditions.</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"940 - 942"},"PeriodicalIF":17.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00428-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable electronics, poised to revolutionize real-time health monitoring, encounter significant challenges due to sweat accumulation, including skin irritation, peeling, short circuits, and corrosion. A groundbreaking study published in Nature presents a sustainable solution: three-dimensional (3D) liquid diodes that effectively pump sweat away, thereby maintaining the wearables’ breathability and stable sensing of biometrics or environments without getting messed up by perspiration. This advancement has immense potential for the development of comfortable and skin-friendly intelligent wearable technologies that seamlessly incorporate sophisticated electronics even in sweaty conditions.

Abstract Image

三维液体二极管的可呼吸穿戴式电子设备
可穿戴电子设备有望彻底改变实时健康监测的现状,但由于汗液积聚而面临着巨大的挑战,包括皮肤刺激、剥落、短路和腐蚀。发表在《自然》(Nature)杂志上的一项突破性研究提出了一种可持续的解决方案:三维(3D)液态二极管能有效地将汗液抽走,从而保持可穿戴设备的透气性和对生物识别或环境的稳定传感,而不会被汗液搅乱。这一进步对于开发舒适、亲肤的智能可穿戴技术具有巨大潜力,即使在出汗的情况下也能无缝集成精密的电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信