Representing Infinite Periodic Hyperbolic Delaunay Triangulations Using Finitely Many Dirichlet Domains

Pub Date : 2024-05-07 DOI:10.1007/s00454-024-00653-x
Vincent Despré, Benedikt Kolbe, Monique Teillaud
{"title":"Representing Infinite Periodic Hyperbolic Delaunay Triangulations Using Finitely Many Dirichlet Domains","authors":"Vincent Despré, Benedikt Kolbe, Monique Teillaud","doi":"10.1007/s00454-024-00653-x","DOIUrl":null,"url":null,"abstract":"<p>The Delaunay triangulation of a set of points <i>P</i> on a hyperbolic surface is the projection of the Delaunay triangulation of the set <span>\\(\\widetilde{P}\\)</span> of lifted points in the hyperbolic plane. Since <span>\\(\\widetilde{P}\\)</span> is infinite, the algorithms to compute Delaunay triangulations in the plane do not generalize naturally. Using a Dirichlet domain, we exhibit a finite set of points that captures the full triangulation. We prove that an edge of a Delaunay triangulation has a combinatorial length (a notion we define in the paper) smaller than <span>\\(12g-6\\)</span> with respect to a Dirichlet domain. To achieve this, we introduce new tools, of intrinsic interest, that capture the properties of length-minimizing curves in the context of closed curves. We then use these to derive structural results on Delaunay triangulations and exhibit certain distance minimizing properties of both the edges of a Delaunay triangulation and of a Dirichlet domain. The bounds produced in this paper depend only on the topology of the surface. They provide mathematical foundations for hyperbolic analogs of the algorithms to compute periodic Delaunay triangulations in Euclidean space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00653-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Delaunay triangulation of a set of points P on a hyperbolic surface is the projection of the Delaunay triangulation of the set \(\widetilde{P}\) of lifted points in the hyperbolic plane. Since \(\widetilde{P}\) is infinite, the algorithms to compute Delaunay triangulations in the plane do not generalize naturally. Using a Dirichlet domain, we exhibit a finite set of points that captures the full triangulation. We prove that an edge of a Delaunay triangulation has a combinatorial length (a notion we define in the paper) smaller than \(12g-6\) with respect to a Dirichlet domain. To achieve this, we introduce new tools, of intrinsic interest, that capture the properties of length-minimizing curves in the context of closed curves. We then use these to derive structural results on Delaunay triangulations and exhibit certain distance minimizing properties of both the edges of a Delaunay triangulation and of a Dirichlet domain. The bounds produced in this paper depend only on the topology of the surface. They provide mathematical foundations for hyperbolic analogs of the algorithms to compute periodic Delaunay triangulations in Euclidean space.

Abstract Image

分享
查看原文
用无限多 Dirichlet 域表示无限周期双曲 Delaunay 三角测量
双曲面上的点集 P 的德劳内三角剖分是双曲面上提升点集 \(\widetilde{P}\)的德劳内三角剖分的投影。由于 \(\widetilde{P}\)是无限的,所以在平面上计算德劳内三角剖分的算法并不能自然地推广。利用 Dirichlet 域,我们展示了能捕捉到完整三角剖分的有限点集。我们证明,相对于 Dirichlet 域,Delaunay 三角剖分的边的组合长度(我们在论文中定义的概念)小于 \(12g-6\)。为了实现这一目标,我们引入了新的工具,这些工具具有内在的意义,可以在封闭曲线的背景下捕捉长度最小化曲线的特性。然后,我们利用这些工具推导出 Delaunay 三角剖分的结构性结果,并展示了 Delaunay 三角剖分的边和 Dirichlet 域的某些距离最小化特性。本文提出的边界只取决于曲面的拓扑结构。它们为计算欧几里得空间中周期性德劳内三角剖分的双曲类似算法提供了数学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信