Estimates for the Number of Limit Cycles in Discontinuous Generalized Liénard Equations

IF 1.9 3区 数学 Q1 MATHEMATICS
Tiago M. P. de Abreu, Ricardo M. Martins
{"title":"Estimates for the Number of Limit Cycles in Discontinuous Generalized Liénard Equations","authors":"Tiago M. P. de Abreu, Ricardo M. Martins","doi":"10.1007/s12346-024-01048-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the maximum number of limit cycles for the piecewise smooth system of differential equations <span>\\(\\dot{x}=y, \\ \\dot{y}=-x-\\varepsilon \\cdot (f(x)\\cdot y +\\textrm{sgn}(y)\\cdot g(x))\\)</span>. Using the averaging method, we were able to generalize a previous result for Liénard systems. In our generalization, we consider <i>g</i> as a polynomial of degree <i>m</i>. We conclude that for sufficiently small values of <span>\\(|{\\varepsilon }|\\)</span>, the number <span>\\(h_{m,n}=\\left[ \\frac{n}{2}\\right] +\\left[ \\frac{m}{2}\\right] +1\\)</span> serves as a lower bound for the maximum number of limit cycles in this system, which bifurcates from the periodic orbits of the linear center <span>\\(\\dot{x}=y\\)</span>, <span>\\(\\dot{y}=-x\\)</span>. Furthermore, we demonstrate that it is indeed possible to obtain a system with <span>\\(h_{m,n}\\)</span> limit cycles.\n</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01048-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the maximum number of limit cycles for the piecewise smooth system of differential equations \(\dot{x}=y, \ \dot{y}=-x-\varepsilon \cdot (f(x)\cdot y +\textrm{sgn}(y)\cdot g(x))\). Using the averaging method, we were able to generalize a previous result for Liénard systems. In our generalization, we consider g as a polynomial of degree m. We conclude that for sufficiently small values of \(|{\varepsilon }|\), the number \(h_{m,n}=\left[ \frac{n}{2}\right] +\left[ \frac{m}{2}\right] +1\) serves as a lower bound for the maximum number of limit cycles in this system, which bifurcates from the periodic orbits of the linear center \(\dot{x}=y\), \(\dot{y}=-x\). Furthermore, we demonstrate that it is indeed possible to obtain a system with \(h_{m,n}\) limit cycles.

Abstract Image

非连续广义李纳方程中极限循环次数的估计值
本文研究了片断平稳微分方程系统 \(\dot{x}=y, \dot{y}=-x-\varepsilon \cdot (f(x)\cdot y +\textrm{sgn}(y)\cdot g(x))/)的最大极限循环次数。利用平均法,我们能够推广先前关于李纳系统的一个结果。在我们的归纳中,我们将 g 视为阶数为 m 的多项式。我们的结论是,对于足够小的\(|{\varepsilon }|\)值,数字 \(h_{m,n}=\left[\frac{n}{2}\right] +\left[\frac{m}{2}\right] +1\)是这个系统中极限循环的最大数量的下限、这是从线性中心 \(\dot{x}=y\), \(\dot{y}=-x\)的周期轨道分叉而来的。此外,我们还证明了确实有可能得到一个具有 (h_{m,n}\)极限循环的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信