{"title":"Estimates for the Number of Limit Cycles in Discontinuous Generalized Liénard Equations","authors":"Tiago M. P. de Abreu, Ricardo M. Martins","doi":"10.1007/s12346-024-01048-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the maximum number of limit cycles for the piecewise smooth system of differential equations <span>\\(\\dot{x}=y, \\ \\dot{y}=-x-\\varepsilon \\cdot (f(x)\\cdot y +\\textrm{sgn}(y)\\cdot g(x))\\)</span>. Using the averaging method, we were able to generalize a previous result for Liénard systems. In our generalization, we consider <i>g</i> as a polynomial of degree <i>m</i>. We conclude that for sufficiently small values of <span>\\(|{\\varepsilon }|\\)</span>, the number <span>\\(h_{m,n}=\\left[ \\frac{n}{2}\\right] +\\left[ \\frac{m}{2}\\right] +1\\)</span> serves as a lower bound for the maximum number of limit cycles in this system, which bifurcates from the periodic orbits of the linear center <span>\\(\\dot{x}=y\\)</span>, <span>\\(\\dot{y}=-x\\)</span>. Furthermore, we demonstrate that it is indeed possible to obtain a system with <span>\\(h_{m,n}\\)</span> limit cycles.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01048-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the maximum number of limit cycles for the piecewise smooth system of differential equations \(\dot{x}=y, \ \dot{y}=-x-\varepsilon \cdot (f(x)\cdot y +\textrm{sgn}(y)\cdot g(x))\). Using the averaging method, we were able to generalize a previous result for Liénard systems. In our generalization, we consider g as a polynomial of degree m. We conclude that for sufficiently small values of \(|{\varepsilon }|\), the number \(h_{m,n}=\left[ \frac{n}{2}\right] +\left[ \frac{m}{2}\right] +1\) serves as a lower bound for the maximum number of limit cycles in this system, which bifurcates from the periodic orbits of the linear center \(\dot{x}=y\), \(\dot{y}=-x\). Furthermore, we demonstrate that it is indeed possible to obtain a system with \(h_{m,n}\) limit cycles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.