Relative Controllability and Hyers–Ulam Stability of Riemann–Liouville Fractional Delay Differential System

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wangmin An, Danfeng Luo, Jizhao Huang
{"title":"Relative Controllability and Hyers–Ulam Stability of Riemann–Liouville Fractional Delay Differential System","authors":"Wangmin An, Danfeng Luo, Jizhao Huang","doi":"10.1007/s12346-024-01046-4","DOIUrl":null,"url":null,"abstract":"<p>In this work, we focus on the relative controllability and Hyers–Ulam stability of Riemann–Liouville fractional delay differential system of order <span>\\(\\alpha \\in (1,2)\\)</span>. Firstly, for the linear system based on Mittag-Laffler matrix function, we define a controllability Grammian matrix to judge whether the system is relatively controllable. Additionally, with the aid of Krasnoselskii’s fixed point theorem, sufficient conditions for the relative controllability of the corresponding semilinear system is also studied. Furthermore, we used Grönwall’s inequality to investigate Hyers–Ulam stability for Riemann–Liouville fractional semilinear delay differential equations. Lastly, three instances are provided to verify that our theoretical results are accurate.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01046-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we focus on the relative controllability and Hyers–Ulam stability of Riemann–Liouville fractional delay differential system of order \(\alpha \in (1,2)\). Firstly, for the linear system based on Mittag-Laffler matrix function, we define a controllability Grammian matrix to judge whether the system is relatively controllable. Additionally, with the aid of Krasnoselskii’s fixed point theorem, sufficient conditions for the relative controllability of the corresponding semilinear system is also studied. Furthermore, we used Grönwall’s inequality to investigate Hyers–Ulam stability for Riemann–Liouville fractional semilinear delay differential equations. Lastly, three instances are provided to verify that our theoretical results are accurate.

Abstract Image

黎曼-刘维尔分数延迟微分系统的相对可控性和海尔-乌兰稳定性
在这项工作中,我们主要研究阶数为\(α \in (1,2)\)的Riemann-Liouville分数延迟微分系统的相对可控性和Hyers-Ulam稳定性。首先,对于基于 Mittag-Laffler 矩阵函数的线性系统,我们定义了可控性 Grammian 矩阵来判断系统是否相对可控。此外,借助 Krasnoselskii 定点定理,我们还研究了相应半线性系统相对可控性的充分条件。此外,我们还利用格伦沃不等式研究了黎曼-刘维尔分数半线性延迟微分方程的海尔-乌兰稳定性。最后,我们提供了三个实例来验证我们的理论结果是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信