{"title":"Hadamard Fractional Differential Equations on an Unbounded Domain with Integro-initial Conditions","authors":"Nemat Nyamoradi, Bashir Ahmad","doi":"10.1007/s12346-024-01044-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce and investigate a Hadamard-type fractional differential equation on the interval <span>\\((1, \\infty )\\)</span> equipped with a new class of logarithmic type integro-initial conditions. We apply the Leggett–Williams fixed point theorem and the concept of iterative positive solutions to establish the existence of solutions for the problem at hand. Our results are new and enrich the literature on Hadamard-type fractional differential equations on the infinite domain. Examples illustrating the main results are presented.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01044-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce and investigate a Hadamard-type fractional differential equation on the interval \((1, \infty )\) equipped with a new class of logarithmic type integro-initial conditions. We apply the Leggett–Williams fixed point theorem and the concept of iterative positive solutions to establish the existence of solutions for the problem at hand. Our results are new and enrich the literature on Hadamard-type fractional differential equations on the infinite domain. Examples illustrating the main results are presented.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.