Convex Bodies of Constant Width with Exponential Illumination Number

Pub Date : 2024-05-04 DOI:10.1007/s00454-024-00647-9
Andrii Arman, Andrii Bondarenko, Andriy Prymak
{"title":"Convex Bodies of Constant Width with Exponential Illumination Number","authors":"Andrii Arman, Andrii Bondarenko, Andriy Prymak","doi":"10.1007/s00454-024-00647-9","DOIUrl":null,"url":null,"abstract":"<p>We show that there exist convex bodies of constant width in <span>\\({\\mathbb {E}}^n\\)</span> with illumination number at least <span>\\((\\cos (\\pi /14)+o(1))^{-n}\\)</span>, answering a question by Kalai. Furthermore, we prove the existence of finite sets of diameter 1 in <span>\\({\\mathbb {E}}^n\\)</span> which cannot be covered by <span>\\((2/\\sqrt{3}-o(1))^{n}\\)</span> balls of diameter 1, improving a result of Bourgain and Lindenstrauss.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00647-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that there exist convex bodies of constant width in \({\mathbb {E}}^n\) with illumination number at least \((\cos (\pi /14)+o(1))^{-n}\), answering a question by Kalai. Furthermore, we prove the existence of finite sets of diameter 1 in \({\mathbb {E}}^n\) which cannot be covered by \((2/\sqrt{3}-o(1))^{n}\) balls of diameter 1, improving a result of Bourgain and Lindenstrauss.

Abstract Image

分享
查看原文
具有指数照明数的恒宽凸面体
我们证明了在\({\mathbb {E}}^n\) 中存在照明数至少为 \((\cos (\pi /14)+o(1))^{-n}\)的恒宽凸体,这回答了卡莱提出的一个问题。此外,我们证明了在\({\mathbb {E}}^n\) 中存在直径为 1 的有限集合,这些集合不能被直径为 1 的球((2/\sqrt{3}-o(1))^{n}\)覆盖,从而改进了布尔甘和林登斯特劳斯的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信