Features of Detecting Malicious Installation Files Using Machine Learning Algorithms

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
P. E. Yugai, E. V. Zhukovskii, P. O. Semenov
{"title":"Features of Detecting Malicious Installation Files Using Machine Learning Algorithms","authors":"P. E. Yugai,&nbsp;E. V. Zhukovskii,&nbsp;P. O. Semenov","doi":"10.3103/S0146411623080333","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a study of the possibility of using machine learning methods to detect malicious installation files related to the type of Trojan installers and downloaders. A comparative analysis of machine learning algorithms applicable for the solution of this problem is provided: the naive Bayes classifier (NBC), random forest, and C4.5 algorithm. Machine learning models are developed using the Weka software. The most significant attributes of installation files of legitimate and Trojan programs are highlighted.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 8","pages":"968 - 974"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623080333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study of the possibility of using machine learning methods to detect malicious installation files related to the type of Trojan installers and downloaders. A comparative analysis of machine learning algorithms applicable for the solution of this problem is provided: the naive Bayes classifier (NBC), random forest, and C4.5 algorithm. Machine learning models are developed using the Weka software. The most significant attributes of installation files of legitimate and Trojan programs are highlighted.

Abstract Image

Abstract Image

使用机器学习算法检测恶意安装文件的特点
摘要 本文研究了使用机器学习方法检测与木马安装程序和下载程序类型有关的恶意安装文件的可能性。本文对适用于解决这一问题的机器学习算法进行了比较分析:奈夫贝叶斯分类器(NBC)、随机森林和 C4.5 算法。机器学习模型使用 Weka 软件开发。突出了合法程序和木马程序安装文件的最重要属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信