{"title":"Method for the Adaptive Neutralization of Structural Breaches in Cyber-Physical Systems Based on Graph Artificial Neural Networks","authors":"E. B. Aleksandrova, A. A. Shtyrkina","doi":"10.3103/S0146411623080011","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a model of threats in cyber-physical systems (CPSs) with examples of attacks and potential negative consequences for systems for various purposes. It is concluded that the critical consequences of attacks are associated with data exchange breaches within a system. Therefore, the CPS security problem is confined to restoring the data exchange efficiency. To neutralize the consequences, which are negative for data exchange, it is proposed to use graph artificial neural networks (ANNs). The contemporary architectures of graph ANNs are reviewed. An algorithm for the generation of a synthetic training dataset is developed and implemented to model the network traffic intensity and load of devices in a system based on graph centrality measures. A graph ANN is trained for the problem of reconfiguring the graph of a CPS.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 8","pages":"1076 - 1083"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623080011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a model of threats in cyber-physical systems (CPSs) with examples of attacks and potential negative consequences for systems for various purposes. It is concluded that the critical consequences of attacks are associated with data exchange breaches within a system. Therefore, the CPS security problem is confined to restoring the data exchange efficiency. To neutralize the consequences, which are negative for data exchange, it is proposed to use graph artificial neural networks (ANNs). The contemporary architectures of graph ANNs are reviewed. An algorithm for the generation of a synthetic training dataset is developed and implemented to model the network traffic intensity and load of devices in a system based on graph centrality measures. A graph ANN is trained for the problem of reconfiguring the graph of a CPS.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision