Groups Acting on Moduli Spaces of Hyper-Kähler Manifolds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Francesca Rizzo
{"title":"Groups Acting on Moduli Spaces of Hyper-Kähler Manifolds","authors":"Francesca Rizzo","doi":"10.1007/s00032-024-00396-7","DOIUrl":null,"url":null,"abstract":"<p>The period morphism of polarized hyper-Kähler manifolds of K3<span>\\(^{[m]}\\)</span>-type gives an embedding of each connected component of the moduli space of polarized hyper-Kähler manifolds of K3<span>\\(^{[m]}\\)</span>-type into their period space, which is the quotient of a Hermitian symmetric domain by an arithmetic group. Following work of Stellari and Gritsenko-Hulek-Sankaran, we study the ramification of covering maps between these period spaces that arise from the action of some groups of isometries.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00396-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The period morphism of polarized hyper-Kähler manifolds of K3\(^{[m]}\)-type gives an embedding of each connected component of the moduli space of polarized hyper-Kähler manifolds of K3\(^{[m]}\)-type into their period space, which is the quotient of a Hermitian symmetric domain by an arithmetic group. Following work of Stellari and Gritsenko-Hulek-Sankaran, we study the ramification of covering maps between these period spaces that arise from the action of some groups of isometries.

作用于超凯勒方程模空间的群
K3(^{[m]}\)型极化超凯勒流形的周期形变给出了K3(^{[m]}\)型极化超凯勒流形模空间的每个连通分量嵌入其周期空间的情况,而周期空间是算术群的赫米对称域的商。继斯泰拉里和格里森科-胡莱克-桑卡兰的研究之后,我们研究了这些周期空间之间的覆盖映射的ramification,这些映射产生于一些等距群的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信