{"title":"Minimizing robust density power-based divergences for general parametric density models","authors":"Akifumi Okuno","doi":"10.1007/s10463-024-00906-9","DOIUrl":null,"url":null,"abstract":"<div><p>Density power divergence (DPD) is designed to robustly estimate the underlying distribution of observations, in the presence of outliers. However, DPD involves an integral of the power of the parametric density models to be estimated; the explicit form of the integral term can be derived only for specific densities, such as normal and exponential densities. While we may perform a numerical integration for each iteration of the optimization algorithms, the computational complexity has hindered the practical application of DPD-based estimation to more general parametric densities. To address the issue, this study introduces a stochastic approach to minimize DPD for general parametric density models. The proposed approach can also be employed to minimize other density power-based <span>\\(\\gamma\\)</span>-divergences, by leveraging unnormalized models. We provide <span>R</span> package for implementation of the proposed approach in https://github.com/oknakfm/sgdpd.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00906-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Density power divergence (DPD) is designed to robustly estimate the underlying distribution of observations, in the presence of outliers. However, DPD involves an integral of the power of the parametric density models to be estimated; the explicit form of the integral term can be derived only for specific densities, such as normal and exponential densities. While we may perform a numerical integration for each iteration of the optimization algorithms, the computational complexity has hindered the practical application of DPD-based estimation to more general parametric densities. To address the issue, this study introduces a stochastic approach to minimize DPD for general parametric density models. The proposed approach can also be employed to minimize other density power-based \(\gamma\)-divergences, by leveraging unnormalized models. We provide R package for implementation of the proposed approach in https://github.com/oknakfm/sgdpd.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.