On Posets, Monomial Ideals, Gorenstein Ideals and their Combinatorics

Order Pub Date : 2024-05-07 DOI:10.1007/s11083-024-09669-7
Geir Agnarsson, Neil Epstein
{"title":"On Posets, Monomial Ideals, Gorenstein Ideals and their Combinatorics","authors":"Geir Agnarsson, Neil Epstein","doi":"10.1007/s11083-024-09669-7","DOIUrl":null,"url":null,"abstract":"<p>In this article we first compare the set of elements in the socle of an ideal of a polynomial algebra <span>\\(K[x_1,\\ldots ,x_d]\\)</span> over a field <i>K</i> that are not in the ideal itself with Macaulay’s inverse systems of such polynomial algebras in a purely combinatorial way for monomial ideals, and then develop some closure operational properties for the related poset <span>\\({{\\mathbb {N}}_0^d}\\)</span>. We then derive some algebraic propositions of <span>\\(\\Gamma \\)</span>-graded rings (a natural generalization of the usual <span>\\({\\mathbb {Z}}\\)</span>-grading where <span>\\(\\Gamma \\)</span> is a monoid) that then have some combinatorial consequences. Interestingly, some of the results from this part that uniformly hold for polynomial rings are always false when the ring is local. We finally delve into some direct computations, in relation to a given term order of the monomials, for general zero-dimensional Gorenstein ideals, and we deduce a few explicit observations and results for the inverse systems from some recent results about socles.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09669-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we first compare the set of elements in the socle of an ideal of a polynomial algebra \(K[x_1,\ldots ,x_d]\) over a field K that are not in the ideal itself with Macaulay’s inverse systems of such polynomial algebras in a purely combinatorial way for monomial ideals, and then develop some closure operational properties for the related poset \({{\mathbb {N}}_0^d}\). We then derive some algebraic propositions of \(\Gamma \)-graded rings (a natural generalization of the usual \({\mathbb {Z}}\)-grading where \(\Gamma \) is a monoid) that then have some combinatorial consequences. Interestingly, some of the results from this part that uniformly hold for polynomial rings are always false when the ring is local. We finally delve into some direct computations, in relation to a given term order of the monomials, for general zero-dimensional Gorenstein ideals, and we deduce a few explicit observations and results for the inverse systems from some recent results about socles.

论 Posets、Monomial Ideals、Gorenstein Ideals 及其组合学
在这篇文章中,我们首先比较了在一个域 K 上的多项式代数 \(K[x_1,\ldots ,x_d]\)的理想中不在理想中的元素的集合,并以一种纯粹的组合方式将这种多项式代数的一元理想与麦考莱的逆系统进行了比较,然后为相关的正集 \({\mathbb {N}}_0^d}\) 发展了一些闭合运算性质。然后,我们推导出了\(\Gamma \)分级环(通常的\({\mathbb {Z}}\)分级的自然概括,其中\(\Gamma \)是一个单项式)的一些代数命题,这些命题产生了一些组合结果。有趣的是,这部分中一些对多项式环均匀成立的结果,在环是局部的时候总是假的。最后,我们深入探讨了与给定的单项式项阶有关的一般零维戈伦斯坦ideal的一些直接计算,并从最近关于索偶的一些结果中推导出了一些关于逆系统的明确观察和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信