Semiquantum private comparison via cavity QED

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xin Xu, Jiang-Yuan Lian, Tian-Yu Ye
{"title":"Semiquantum private comparison via cavity QED","authors":"Xin Xu,&nbsp;Jiang-Yuan Lian,&nbsp;Tian-Yu Ye","doi":"10.1007/s11128-024-04398-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we design the first semiquantum private comparison (SQPC) protocol which is realized via cavity quantum electrodynamics (QED) by making use of the evolution law of atom. With the help of a semi-honest third party (TP), the proposed protocol can compare the equality of private inputs from two semiquantum parties who only have limited quantum capabilities. The proposed protocol uses product states as initial quantum resource and employs none of unitary operations, quantum entanglement swapping operation or delay lines. Security proof turns out that it can defeat both the external attack and the internal attack.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04398-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we design the first semiquantum private comparison (SQPC) protocol which is realized via cavity quantum electrodynamics (QED) by making use of the evolution law of atom. With the help of a semi-honest third party (TP), the proposed protocol can compare the equality of private inputs from two semiquantum parties who only have limited quantum capabilities. The proposed protocol uses product states as initial quantum resource and employs none of unitary operations, quantum entanglement swapping operation or delay lines. Security proof turns out that it can defeat both the external attack and the internal attack.

Abstract Image

Abstract Image

通过空腔 QED 进行半量子私密比较
本文设计了首个半量子私人比较(SQPC)协议,该协议利用原子演化规律,通过空腔量子电动力学(QED)实现。在半诚信第三方(TP)的帮助下,所提出的协议可以比较来自两个量子能力有限的半量子方的私人输入是否相等。拟议协议使用乘积态作为初始量子资源,不使用单元操作、量子纠缠交换操作或延迟线。安全证明表明,它既能战胜外部攻击,也能战胜内部攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信