On a Formation of Singularities of Solutions to Soliton Equations Represented by L, A, B-triples

IF 0.8 3区 数学 Q2 MATHEMATICS
Iskander A. Taimanov
{"title":"On a Formation of Singularities of Solutions to Soliton Equations Represented by L, A, B-triples","authors":"Iskander A. Taimanov","doi":"10.1007/s10114-024-2324-x","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the mechanism of formation of singularities of solutions to the Novikov–Veselov, modified Novikov–Veselov, and Davey–Stewartson II (DSII) equations obtained by the Moutard type transformations. These equations admit the <i>L, A, B</i>-triple presentation, the generalization of the <i>L, A</i>-pairs for 2+1-soliton equations. We relate the blow-up of solutions to the non-conservation of the zero level of discrete spectrum of the <i>L</i>-operator. We also present a class of exact solutions, of the DSII system, which depend on two functional parameters, and show that all possible singularities of solutions to DSII equation obtained by the Moutard transformation are indeterminancies, i.e., points when approaching which in different spatial directions the solution has different limits.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 1","pages":"406 - 416"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2324-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the mechanism of formation of singularities of solutions to the Novikov–Veselov, modified Novikov–Veselov, and Davey–Stewartson II (DSII) equations obtained by the Moutard type transformations. These equations admit the L, A, B-triple presentation, the generalization of the L, A-pairs for 2+1-soliton equations. We relate the blow-up of solutions to the non-conservation of the zero level of discrete spectrum of the L-operator. We also present a class of exact solutions, of the DSII system, which depend on two functional parameters, and show that all possible singularities of solutions to DSII equation obtained by the Moutard transformation are indeterminancies, i.e., points when approaching which in different spatial directions the solution has different limits.

论 L、A、B 三元组表示的孤子方程解奇异点的形成
我们讨论了通过 Moutard 型变换得到的 Novikov-Veselov、修正 Novikov-Veselov 和 Davey-Stewartson II(DSII)方程解的奇点形成机制。这些方程采用了 L、A、B 三重表述,即 2+1 索利顿方程的 L、A 对的广义表述。我们把解的膨胀与 L 操作符离散谱零级的不守恒联系起来。我们还提出了一类取决于两个函数参数的 DSII 系统精确解,并证明了通过 Moutard 变换得到的 DSII 方程解的所有可能奇点都是不确定的,即接近不同空间方向上的解具有不同极限的点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信