Mohammad Farajzadeh-Tehrani, Mark Mclean, Aleksey Zinger
{"title":"Normal Crossings Singularities for Symplectic Topology: Structures","authors":"Mohammad Farajzadeh-Tehrani, Mark Mclean, Aleksey Zinger","doi":"10.1007/s10114-024-2042-4","DOIUrl":null,"url":null,"abstract":"<div><p>Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2042-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.