Normal Crossings Singularities for Symplectic Topology: Structures

IF 0.8 3区 数学 Q2 MATHEMATICS
Mohammad Farajzadeh-Tehrani, Mark Mclean, Aleksey Zinger
{"title":"Normal Crossings Singularities for Symplectic Topology: Structures","authors":"Mohammad Farajzadeh-Tehrani,&nbsp;Mark Mclean,&nbsp;Aleksey Zinger","doi":"10.1007/s10114-024-2042-4","DOIUrl":null,"url":null,"abstract":"<div><p>Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 1","pages":"107 - 160"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2042-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.

交点拓扑学的法线交叉奇异性:结构
我们之前的论文介绍了正交折射分项和变项的拓扑概念,证明它们在适当意义上等价于相应的几何概念,并建立了正交折射变项的拓扑平滑性准则。本文构造了与正交交映骰子自然相关的吹积、复线束和对数切线束,并确定了最后一个束的切恩类。这些结构在各种模空间的构造和分析中都有应用。作为对数切线束的切恩类公式的推论,我们完善了阿鲁菲关于完全交点处炸开的切线束的切恩类公式,以考虑扭转,并将其扩展到任意法向交点除数的最深层炸开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信