Normal Crossings Singularities for Symplectic Topology: Structures

Pub Date : 2024-01-05 DOI:10.1007/s10114-024-2042-4
Mohammad Farajzadeh-Tehrani, Mark Mclean, Aleksey Zinger
{"title":"Normal Crossings Singularities for Symplectic Topology: Structures","authors":"Mohammad Farajzadeh-Tehrani,&nbsp;Mark Mclean,&nbsp;Aleksey Zinger","doi":"10.1007/s10114-024-2042-4","DOIUrl":null,"url":null,"abstract":"<div><p>Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2042-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous papers introduce topological notions of normal crossings symplectic divisor and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions, and establish a topological smoothability criterion for normal crossings symplectic varieties. The present paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These structures have applications in constructions and analysis of various moduli spaces. As a corollary of the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern class of the tangent bundle of the blowup at a complete intersection to account for the torsion and extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.

分享
查看原文
交点拓扑学的法线交叉奇异性:结构
我们之前的论文介绍了正交折射分项和变项的拓扑概念,证明它们在适当意义上等价于相应的几何概念,并建立了正交折射变项的拓扑平滑性准则。本文构造了与正交交映骰子自然相关的吹积、复线束和对数切线束,并确定了最后一个束的切恩类。这些结构在各种模空间的构造和分析中都有应用。作为对数切线束的切恩类公式的推论,我们完善了阿鲁菲关于完全交点处炸开的切线束的切恩类公式,以考虑扭转,并将其扩展到任意法向交点除数的最深层炸开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信