Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion Models

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Marina Santacroce, Paola Siri, Barbara Trivellato
{"title":"Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion Models","authors":"Marina Santacroce,&nbsp;Paola Siri,&nbsp;Barbara Trivellato","doi":"10.1007/s00245-024-10114-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the classical problem of maximizing the expected utility of terminal net wealth with a final random liability in a simple jump-diffusion model. In the spirit of Horst et al. (Stoch Process Appl 124(5):1813–1848, 2014) and Santacroce and Trivellato (SIAM J Control Optim 52(6):3517–3537, 2014), under suitable conditions the optimal strategy is expressed in implicit form in terms of a forward backward system of equations. Some explicit results are presented for the pure jump model and for exponential utilities.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-024-10114-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10114-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the classical problem of maximizing the expected utility of terminal net wealth with a final random liability in a simple jump-diffusion model. In the spirit of Horst et al. (Stoch Process Appl 124(5):1813–1848, 2014) and Santacroce and Trivellato (SIAM J Control Optim 52(6):3517–3537, 2014), under suitable conditions the optimal strategy is expressed in implicit form in terms of a forward backward system of equations. Some explicit results are presented for the pure jump model and for exponential utilities.

跳跃扩散模型中效用最大化的前向后向 SDEs 系统
我们考虑的经典问题是,在一个简单的跳跃-扩散模型中,最大化最终净财富的预期效用与最终随机负债。本着 Horst 等人(Stoch Process Appl 124(5):1813-1848, 2014)和 Santacroce 和 Trivellato(SIAM J Control Optim 52(6):3517-3537, 2014)的精神,在合适的条件下,最优策略以隐式形式表达为前向后向方程组。本文给出了纯跳跃模型和指数效用的一些显式结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信