Ultrasound induced biosynthesis of silver nanoparticles embedded into chitosan polymers: Investigation of its anti-cutaneous squamous cell carcinoma effects
{"title":"Ultrasound induced biosynthesis of silver nanoparticles embedded into chitosan polymers: Investigation of its anti-cutaneous squamous cell carcinoma effects","authors":"Huiwen Zheng, Yin Li, Wei Li, Sha Zhou, Chunlan Huang, Lizhong Du","doi":"10.1515/chem-2024-0018","DOIUrl":null,"url":null,"abstract":"Here we have shown the novel biosynthesis of silver nanoparticles (Ag NPs) encapsulated by chitosan polymers in the presence of <jats:italic>Achillea millefolium</jats:italic> aqueous extract (Ag NPs@CHI). The Ag ions were first embedded over the chitosan surface enriched with polar organofunctions like amines (NH<jats:sub>2</jats:sub>) and hydroxyls, and subsequently the ions were reduced green-metrically by the electron rich phytochemicals of the plant extract. After the synthesis numerous techniques, including the UV-vis spectrum, transmission electron microscopy, FE-SEM, EDS-elemental mapping, and ICP-AES, were used to study the physicochemical characteristics of the nanocomposite biomaterial. Next, we explored the material biologically in the anti-cutaneous squamous cell carcinoma effects against the corresponding cell lines like PM1, MET1, MET 4, SCC T9, SCC IC1MET, SCC IC19, SCC T8, and SCC T11. The related IC<jats:sub>50</jats:sub> values of the nanocomposite against them were 182, 158, 177, 178, 177, 99, 62, and 183 µg/mL, respectively. The cytotoxicity in terms of percentage cell viability of cancer cells were decreased with the increase in the nanocomposite doses.","PeriodicalId":19520,"journal":{"name":"Open Chemistry","volume":"70 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/chem-2024-0018","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Here we have shown the novel biosynthesis of silver nanoparticles (Ag NPs) encapsulated by chitosan polymers in the presence of Achillea millefolium aqueous extract (Ag NPs@CHI). The Ag ions were first embedded over the chitosan surface enriched with polar organofunctions like amines (NH2) and hydroxyls, and subsequently the ions were reduced green-metrically by the electron rich phytochemicals of the plant extract. After the synthesis numerous techniques, including the UV-vis spectrum, transmission electron microscopy, FE-SEM, EDS-elemental mapping, and ICP-AES, were used to study the physicochemical characteristics of the nanocomposite biomaterial. Next, we explored the material biologically in the anti-cutaneous squamous cell carcinoma effects against the corresponding cell lines like PM1, MET1, MET 4, SCC T9, SCC IC1MET, SCC IC19, SCC T8, and SCC T11. The related IC50 values of the nanocomposite against them were 182, 158, 177, 178, 177, 99, 62, and 183 µg/mL, respectively. The cytotoxicity in terms of percentage cell viability of cancer cells were decreased with the increase in the nanocomposite doses.
期刊介绍:
Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. The central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. The journal is the premier source for cutting edge research in fundamental chemistry and it provides high quality peer review services for its authors across the world. Moreover, it allows for libraries everywhere to avoid subscribing to multiple local publications, and to receive instead all the necessary chemistry research from a single source available to the entire scientific community.