Model-X Knockoffs for high-dimensional controlled variable selection under the proportional hazards model with heterogeneity parameter

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-05-06 DOI:10.1007/s00184-024-00966-0
Ran Hu, Di Xia, Haoyu Wang, Caixu Xu, Yingli Pan
{"title":"Model-X Knockoffs for high-dimensional controlled variable selection under the proportional hazards model with heterogeneity parameter","authors":"Ran Hu, Di Xia, Haoyu Wang, Caixu Xu, Yingli Pan","doi":"10.1007/s00184-024-00966-0","DOIUrl":null,"url":null,"abstract":"<p>A major challenge arising from data integration pertains to data heterogeneity in terms of study population, study design, or study coordination. Ignoring such heterogeneity in data analysis can lead to the biased estimation. In this paper, regression analysis of the proportional hazards model with heterogeneity parameter is studied. We combine the Model-X Knockoffs procedure with fused LASSO approach to control the false discovery rate in the variable selection and learn the integrative data analysis of partially heterogeneous subgroups when the outcome of interest is time to event. A regularized working partial likelihood function is established and a trick of reparameterization is developed for the numerical calculation of the proposed estimator. Simulation studies are conducted to assess the finite-sample performance of the proposed method. A data example from a clinical trial in primary biliary cirrhosis study is analyzed to demonstrate the application of our proposed method.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00966-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge arising from data integration pertains to data heterogeneity in terms of study population, study design, or study coordination. Ignoring such heterogeneity in data analysis can lead to the biased estimation. In this paper, regression analysis of the proportional hazards model with heterogeneity parameter is studied. We combine the Model-X Knockoffs procedure with fused LASSO approach to control the false discovery rate in the variable selection and learn the integrative data analysis of partially heterogeneous subgroups when the outcome of interest is time to event. A regularized working partial likelihood function is established and a trick of reparameterization is developed for the numerical calculation of the proposed estimator. Simulation studies are conducted to assess the finite-sample performance of the proposed method. A data example from a clinical trial in primary biliary cirrhosis study is analyzed to demonstrate the application of our proposed method.

Abstract Image

带有异质性参数的比例危险模型下用于高维受控变量选择的 Model-X Knockoffs
数据整合面临的一个主要挑战是研究人群、研究设计或研究协调方面的数据异质性。在数据分析中忽略这种异质性可能会导致估计偏差。本文研究了带有异质性参数的比例危险模型的回归分析。我们将 Model-X Knockoffs 程序与融合 LASSO 方法相结合,以控制变量选择中的误发现率,并学习当感兴趣的结果是事件发生时间时部分异质性亚组的综合数据分析。建立了正则化工作部分似然函数,并开发了一种重参数化技巧,用于对所提出的估计器进行数值计算。通过模拟研究来评估建议方法的有限样本性能。分析了一个原发性胆汁性肝硬化临床试验的数据实例,以证明我们提出的方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信