On the Product Functor on Inner forms of the General Linear Group Over A Non-Archimedean Local Field

Pub Date : 2024-05-02 DOI:10.1007/s00031-024-09861-4
Kei Yuen Chan
{"title":"On the Product Functor on Inner forms of the General Linear Group Over A Non-Archimedean Local Field","authors":"Kei Yuen Chan","doi":"10.1007/s00031-024-09861-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G_n\\)</span> be an inner form of a general linear group over a non-Archimedean local field. We fix an arbitrary irreducible representation <span>\\(\\sigma \\)</span> of <span>\\(G_n\\)</span>. Building on the work of Lapid-Mínguez on the irreducibility of parabolic inductions, we show how to define a full subcategory of the category of smooth representations of some <span>\\(G_m\\)</span>, on which the parabolic induction functor <span>\\(\\tau \\mapsto \\tau \\times \\sigma \\)</span> is fully-faithful. A key ingredient of our proof for the fully-faithfulness is constructions of indecomposable representations of length 2. Such result for a special situation has been previously applied in proving the local non-tempered Gan-Gross-Prasad conjecture for non-Archimedean general linear groups. In this article, we apply the fully-faithful result to prove a certain big derivative arising from Jacquet functor satisfies the property that its socle is irreducible and has multiplicity one in the Jordan-Hölder sequence of the big derivative.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09861-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G_n\) be an inner form of a general linear group over a non-Archimedean local field. We fix an arbitrary irreducible representation \(\sigma \) of \(G_n\). Building on the work of Lapid-Mínguez on the irreducibility of parabolic inductions, we show how to define a full subcategory of the category of smooth representations of some \(G_m\), on which the parabolic induction functor \(\tau \mapsto \tau \times \sigma \) is fully-faithful. A key ingredient of our proof for the fully-faithfulness is constructions of indecomposable representations of length 2. Such result for a special situation has been previously applied in proving the local non-tempered Gan-Gross-Prasad conjecture for non-Archimedean general linear groups. In this article, we apply the fully-faithful result to prove a certain big derivative arising from Jacquet functor satisfies the property that its socle is irreducible and has multiplicity one in the Jordan-Hölder sequence of the big derivative.

分享
查看原文
论非阿基米德局部域上一般线性群内形式的乘积赋形剂
让 \(G_n\) 是一个非阿基米德局部域上的一般线性群的内形式。我们固定一个 \(G_n\) 的任意不可还原表示(\sigma \)。在拉皮德-米恩格斯(Lapid-Mínguez)关于抛物线归纳的不可还原性的研究基础上,我们展示了如何定义某个\(G_m\)的光滑表示类别的全子类,在这个子类上,抛物线归纳函子\(\tau \mapsto \tau \times \sigma \)是完全忠实的。我们证明完全忠实性的一个关键要素是长度为 2 的不可分解表示的构造。这种特殊情况下的结果以前曾被应用于证明非阿基米德一般线性群的局部非稳态甘-格罗斯-普拉萨德猜想。在这篇文章中,我们应用完全忠实结果来证明由雅克特函子产生的某个大导数满足这样一个性质,即它的共轭是不可还原的,并且在大导数的乔丹-荷尔德序列中具有乘数一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信