John T. Kemper, Richard Knox, Muhammad Raffae, Evan Schulz, Ryan Bailey, Ryan R. Morrison, Ellen Wohl
{"title":"Estimating catchment‐scale sediment storage in a large River Basin, Colorado River, USA","authors":"John T. Kemper, Richard Knox, Muhammad Raffae, Evan Schulz, Ryan Bailey, Ryan R. Morrison, Ellen Wohl","doi":"10.1002/rra.4300","DOIUrl":null,"url":null,"abstract":"Catchment‐scale sediment storage is conceptualized as increasing in magnitude downstream, although reach‐scale controls may override this trend. We use empirical data from a literature review and two numerical models to quantitatively estimate sediment storage across the Colorado River Basin, USA. We use assumed alluvial thickness with floodplains delineated in the GFPLAIN model from 30 m digital elevation models. We use the SWAT+ model based on model‐estimated (i) groundwater storage and (ii) sediment storage. Existing studies indicate that sediment stored in floodplains and on low terraces is ~0.3–6 m thick. A first‐order approximation of volumetric storage capacity for natural floodplains is ~10<jats:sup>5</jats:sup> m<jats:sup>3</jats:sup> per km. Sediment storage volumes of floodplains are ~10<jats:sup>8</jats:sup>–10<jats:sup>11</jats:sup> m<jats:sup>3</jats:sup> over river lengths of 10<jats:sup>1</jats:sup>–10<jats:sup>3</jats:sup> m. For the modeling estimates, we evaluated sediment storage by stream order and by elevation band within the Upper and Lower Colorado River Basins. Comparisons among the outputs cause us to place more confidence in the GFPLAIN and SWAT+ aquifer volume estimates. Each method includes substantial uncertainty and constitutes a first‐order approximation. Results suggest using 21 and 130 billion cubic meters as approximate lower and upper bounds for total sediment storage in the Upper Basin and 314 and 482 billion cubic meters as approximate lower and upper bounds for the Lower Basin. The largest proportion of sediment is stored in the montane and steppe zones in the Upper Basin and in the Sonoran zone in the Lower Basin.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"12 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4300","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Catchment‐scale sediment storage is conceptualized as increasing in magnitude downstream, although reach‐scale controls may override this trend. We use empirical data from a literature review and two numerical models to quantitatively estimate sediment storage across the Colorado River Basin, USA. We use assumed alluvial thickness with floodplains delineated in the GFPLAIN model from 30 m digital elevation models. We use the SWAT+ model based on model‐estimated (i) groundwater storage and (ii) sediment storage. Existing studies indicate that sediment stored in floodplains and on low terraces is ~0.3–6 m thick. A first‐order approximation of volumetric storage capacity for natural floodplains is ~105 m3 per km. Sediment storage volumes of floodplains are ~108–1011 m3 over river lengths of 101–103 m. For the modeling estimates, we evaluated sediment storage by stream order and by elevation band within the Upper and Lower Colorado River Basins. Comparisons among the outputs cause us to place more confidence in the GFPLAIN and SWAT+ aquifer volume estimates. Each method includes substantial uncertainty and constitutes a first‐order approximation. Results suggest using 21 and 130 billion cubic meters as approximate lower and upper bounds for total sediment storage in the Upper Basin and 314 and 482 billion cubic meters as approximate lower and upper bounds for the Lower Basin. The largest proportion of sediment is stored in the montane and steppe zones in the Upper Basin and in the Sonoran zone in the Lower Basin.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.