Effect of an Inclined Magnetic Field on Soret-Dufour Driven Double-Diffusive Convection in a Horizontal Binary Mixture Destabilized by Uniform Heat and Mass from Below

IF 0.7 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Ismail Filahi, Safae Hasnaoui, Mohammed Hasnaoui, Mohamed Bourich, Abdelkhalek Amahmid, Youssef Dahani, Abdelfattah El Mansouri, Abdelmajid Mansour
{"title":"Effect of an Inclined Magnetic Field on Soret-Dufour Driven Double-Diffusive Convection in a Horizontal Binary Mixture Destabilized by Uniform Heat and Mass from Below","authors":"Ismail Filahi,&nbsp;Safae Hasnaoui,&nbsp;Mohammed Hasnaoui,&nbsp;Mohamed Bourich,&nbsp;Abdelkhalek Amahmid,&nbsp;Youssef Dahani,&nbsp;Abdelfattah El Mansouri,&nbsp;Abdelmajid Mansour","doi":"10.1134/S0040579523060040","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to deal with thermosolutal natural convection within an enclosure submitted to destabilizing heat and mass fluxes and confining an electrically conducting binary mixture. The cavity is bathed in an external magnetic field and Soret and Dufour effects are considered. An approximate analytical solution is derived, valid in the limit of a shallow enclosure and confirmed numerically by using a finite difference method. The results show the existence of six regions in <span>\\(\\left( {{\\text{Du}}{\\kern 1pt} --{\\kern 1pt} {\\text{Sr}}} \\right)\\)</span> plane describing different flow behaviours. The critical Hartman number and critical inclination of magnetic field, which lead to the suppression of convective flows are calculated analytically vs. the control parameters. The obtained results illustrate a significant impact of the combined effects of the inclined magnetic field (via its intensity and inclination) and the Soret and Dufour parameters on different thresholds of convection and the resulting heat and mass transfer. Moreover, the increase in the inclination of the magnetic field in the range <span>\\({{0 &lt; \\theta &lt; \\frac{\\pi }{2}} \\mathord{\\left/ {\\vphantom {{0 &lt; \\theta &lt; \\frac{\\pi }{2}} {\\left( {\\frac{\\pi }{2} &lt; \\theta &lt; \\pi } \\right)}}} \\right. \\kern-0em} {\\left( {\\frac{\\pi }{2} &lt; \\theta &lt; \\pi } \\right)}}\\)</span> has a stabilizing/(destabilizing) effect with respect to stationary and sub-critical convections, regardless of the Hartmann number.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1466 - 1489"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579523060040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to deal with thermosolutal natural convection within an enclosure submitted to destabilizing heat and mass fluxes and confining an electrically conducting binary mixture. The cavity is bathed in an external magnetic field and Soret and Dufour effects are considered. An approximate analytical solution is derived, valid in the limit of a shallow enclosure and confirmed numerically by using a finite difference method. The results show the existence of six regions in \(\left( {{\text{Du}}{\kern 1pt} --{\kern 1pt} {\text{Sr}}} \right)\) plane describing different flow behaviours. The critical Hartman number and critical inclination of magnetic field, which lead to the suppression of convective flows are calculated analytically vs. the control parameters. The obtained results illustrate a significant impact of the combined effects of the inclined magnetic field (via its intensity and inclination) and the Soret and Dufour parameters on different thresholds of convection and the resulting heat and mass transfer. Moreover, the increase in the inclination of the magnetic field in the range \({{0 < \theta < \frac{\pi }{2}} \mathord{\left/ {\vphantom {{0 < \theta < \frac{\pi }{2}} {\left( {\frac{\pi }{2} < \theta < \pi } \right)}}} \right. \kern-0em} {\left( {\frac{\pi }{2} < \theta < \pi } \right)}}\) has a stabilizing/(destabilizing) effect with respect to stationary and sub-critical convections, regardless of the Hartmann number.

Abstract Image

Abstract Image

倾斜磁场对自下而上均匀热量和质量破坏稳定的水平二元混合物中索尔特-杜富尔驱动的双扩散对流的影响
摘要 本文专门讨论了一个外壳内的热固性自然对流,该外壳受到不稳定的热量和质量通量的影响,并限制了导电的二元混合物。空腔沐浴在外部磁场中,并考虑了索雷特效应和杜富尔效应。得出的近似解析解在浅腔极限情况下有效,并通过有限差分法进行了数值确认。结果表明,在描述不同流动行为的 \(left( {{\text{Du}}{\kern 1pt} --{\kern 1pt} {\text{Sr}}} \right)\) 平面上存在六个区域。根据控制参数,分析计算了导致对流抑制的临界哈特曼数和临界磁场倾角。所得结果表明,倾斜磁场(通过其强度和倾角)以及索雷特和杜富尔参数的综合效应对不同的对流临界值以及由此产生的传热和传质具有重大影响。此外,在 \({{0 < \theta < \frac\{pi }{2}} 范围内磁场倾角的增加\mathord\{left/ {\vphantom {{0 <\theta <\frac\{pi }{2}}{left( {\frac{pi }{2} <\theta <\pi }\right)}}}}\right.\kern-0em} {left( {\frac\pi }{2} < \theta < \pi } (right)}})对于静止和次临界对流具有稳定/(去稳定)作用,与哈特曼数无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
70
审稿时长
24 months
期刊介绍: Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信