An away-step Frank–Wolfe algorithm for constrained multiobjective optimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Douglas S. Gonçalves, Max L. N. Gonçalves, Jefferson G. Melo
{"title":"An away-step Frank–Wolfe algorithm for constrained multiobjective optimization","authors":"Douglas S. Gonçalves, Max L. N. Gonçalves, Jefferson G. Melo","doi":"10.1007/s10589-024-00577-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose and analyze an <i>away-step</i> Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00577-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze an away-step Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.

Abstract Image

用于约束性多目标优化的远离步骤弗兰克-沃尔夫算法
在本文中,我们提出并分析了一种专为解决多边形上的多目标优化问题而设计的分步 Frank-Wolfe 算法。我们证明了该算法生成的序列的每个极限点都是弱帕累托最优解。此外,在附加条件下,我们还证明了整个序列对帕累托最优解的线性收敛性。数值示例表明,在多目标 Frank-Wolfe 收敛率仅为亚线性的问题中,所提出的算法表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信