{"title":"Evolution of Quantum Cryptography in Response to the Computational Power of Quantum Computers: An Archival View","authors":"Priya Sharma, Vrinda Gupta, Sandeep Kumar Sood","doi":"10.1007/s11831-024-10122-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum cryptography (QC), rooted in the principles of quantum mechanics, stands as a beacon of security, offering an unparalleled level of protection against quantum attacks. This exceptional attribute has spurred researchers from diverse scientific disciplines to actively collaborate in advancing the field toward practical implementation. Physicists, computer scientists, engineers, and mathematicians are collectively channeling their efforts, leading to a substantial body of research outcomes. Hence, through this study, we delve into comprehending the multidisciplinary research landscape of QC through scientometrics. Here, we analyze the research outcomes in QC to discern its pattern in terms of publications and citations. Additionally, we identify the most influential countries, authors, and communication sources contributing to various facets of QC. Furthermore, this study also provides a research trajectory that outlines the prevalent research themes and current areas of research in QC. This information serves as a guiding light for newcomers, offering them direction and insight into the dynamic field of QC.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"31 8","pages":"4533 - 4555"},"PeriodicalIF":9.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10122-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum cryptography (QC), rooted in the principles of quantum mechanics, stands as a beacon of security, offering an unparalleled level of protection against quantum attacks. This exceptional attribute has spurred researchers from diverse scientific disciplines to actively collaborate in advancing the field toward practical implementation. Physicists, computer scientists, engineers, and mathematicians are collectively channeling their efforts, leading to a substantial body of research outcomes. Hence, through this study, we delve into comprehending the multidisciplinary research landscape of QC through scientometrics. Here, we analyze the research outcomes in QC to discern its pattern in terms of publications and citations. Additionally, we identify the most influential countries, authors, and communication sources contributing to various facets of QC. Furthermore, this study also provides a research trajectory that outlines the prevalent research themes and current areas of research in QC. This information serves as a guiding light for newcomers, offering them direction and insight into the dynamic field of QC.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.