A biharmonic analogue of the Alt–Caffarelli problem

IF 1.3 2区 数学 Q1 MATHEMATICS
Hans-Christoph Grunau, Marius Müller
{"title":"A biharmonic analogue of the Alt–Caffarelli problem","authors":"Hans-Christoph Grunau, Marius Müller","doi":"10.1007/s00208-024-02883-z","DOIUrl":null,"url":null,"abstract":"<p>We study a natural biharmonic analogue of the classical Alt–Caffarelli problem, both under Dirichlet and under Navier boundary conditions. We show existence, basic properties and <span>\\(C^{1,\\alpha }\\)</span>-regularity of minimisers. For the Navier problem we also obtain a symmetry result in case that the boundary data are radial. We find this remarkable because the problem under investigation is of higher order. Computing radial minimisers explicitly we find that the obtained regularity is optimal.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02883-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a natural biharmonic analogue of the classical Alt–Caffarelli problem, both under Dirichlet and under Navier boundary conditions. We show existence, basic properties and \(C^{1,\alpha }\)-regularity of minimisers. For the Navier problem we also obtain a symmetry result in case that the boundary data are radial. We find this remarkable because the problem under investigation is of higher order. Computing radial minimisers explicitly we find that the obtained regularity is optimal.

Abstract Image

阿尔特-卡法雷利问题的双谐波类似物
我们研究了经典 Alt-Caffarelli 问题在 Dirichlet 和 Navier 边界条件下的自然双谐类似问题。我们证明了最小化的存在性、基本性质和(C^{1,\alpha }\)正则性。对于 Navier 问题,我们还得到了边界数据是径向的情况下的对称性结果。我们发现这一点很重要,因为所研究的问题是高阶问题。通过明确计算径向最小值,我们发现所获得的正则性是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信