Normalized solutions to Schrödinger equations with potential and inhomogeneous nonlinearities on large smooth domains

IF 1.3 2区 数学 Q1 MATHEMATICS
Thomas Bartsch, Shijie Qi, Wenming Zou
{"title":"Normalized solutions to Schrödinger equations with potential and inhomogeneous nonlinearities on large smooth domains","authors":"Thomas Bartsch, Shijie Qi, Wenming Zou","doi":"10.1007/s00208-024-02857-1","DOIUrl":null,"url":null,"abstract":"<p>The paper addresses an open problem raised in Bartsch et al. (Commun Partial Differ Equ 46(9):1729–1756, 2021) on the existence of normalized solutions to Schrödinger equations with potentials and inhomogeneous nonlinearities. We consider the problem </p><span>$$\\begin{aligned} -\\Delta u+V(x)u+\\lambda u = |u|^{q-2}u+\\beta |u|^{p-2}u, \\quad \\Vert u\\Vert ^2_2=\\int |u|^2dx = \\alpha \\end{aligned}$$</span><p>both on <span>\\({\\mathbb R}^N\\)</span> as well as on domains <span>\\(r\\Omega \\)</span> where <span>\\(\\Omega \\subset {\\mathbb R}^N\\)</span> is a bounded smooth star-shaped domain and <span>\\(r&gt;0\\)</span> is large. The exponents satisfy <span>\\(2&lt;p&lt;2+\\frac{4}{N}&lt;q&lt;2^*=\\frac{2N}{N-2}\\)</span>, so that the nonlinearity is a combination of a mass subcritical and a mass supercritical term. Nonlinear Schrödinger equations with combined power-type nonlinearities have been investigated first by Tao et al. (Commun Partial Differ Equ 32(7-9):1281-1343, 2007). Due to the presence of the potential a by now standard approach based on the Pohozaev identity cannot be used. We develop a robust method to study the existence of normalized solutions of nonlinear Schrödinger equations with potential and find conditions on <i>V</i> so that normalized solutions exist. Our results are new even in the case <span>\\(\\beta =0\\)</span>.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"116 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02857-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper addresses an open problem raised in Bartsch et al. (Commun Partial Differ Equ 46(9):1729–1756, 2021) on the existence of normalized solutions to Schrödinger equations with potentials and inhomogeneous nonlinearities. We consider the problem

$$\begin{aligned} -\Delta u+V(x)u+\lambda u = |u|^{q-2}u+\beta |u|^{p-2}u, \quad \Vert u\Vert ^2_2=\int |u|^2dx = \alpha \end{aligned}$$

both on \({\mathbb R}^N\) as well as on domains \(r\Omega \) where \(\Omega \subset {\mathbb R}^N\) is a bounded smooth star-shaped domain and \(r>0\) is large. The exponents satisfy \(2<p<2+\frac{4}{N}<q<2^*=\frac{2N}{N-2}\), so that the nonlinearity is a combination of a mass subcritical and a mass supercritical term. Nonlinear Schrödinger equations with combined power-type nonlinearities have been investigated first by Tao et al. (Commun Partial Differ Equ 32(7-9):1281-1343, 2007). Due to the presence of the potential a by now standard approach based on the Pohozaev identity cannot be used. We develop a robust method to study the existence of normalized solutions of nonlinear Schrödinger equations with potential and find conditions on V so that normalized solutions exist. Our results are new even in the case \(\beta =0\).

大光滑域上具有势和非均质非线性的薛定谔方程的归一化解
本文讨论了 Bartsch 等人(Commun Partial Differ Equ 46(9):1729-1756, 2021)提出的一个公开问题,即具有电势和非均质非线性的薛定谔方程的归一化解的存在性问题。我们考虑的问题是 $$\begin{aligned} -\Delta u+V(x)u+\lambda u = |u|^{q-2}u+\beta |u|^{p-2}u、\quad \Vert u\Vert ^2_2=\int |u|^2dx = \alpha \end{aligned}$$ 既在\({\mathbb R}^N\)上,也在域\(r\Omega \)上,其中\(\Omega \子集{\mathbb R}^N\)是一个有界的光滑星形域,并且\(r>;0)很大。指数满足\(2<p<2+\frac{4}{N}<q<2^*=\frac{2N}{N-2}\),因此非线性是质量次临界项和质量超临界项的组合。Tao 等人首先研究了具有组合幂型非线性的非线性薛定谔方程(Commun Partial Differ Equ 32(7-9):1281-1343, 2007)。由于势的存在,目前基于 Pohozaev 特性的标准方法无法使用。我们开发了一种稳健的方法来研究具有势的非线性薛定谔方程的归一化解的存在性,并找到了使归一化解存在的 V 条件。即使在 \(\beta =0\) 的情况下,我们的结果也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信