Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise

IF 1.3 2区 数学 Q1 MATHEMATICS
Martina Hofmanová, Xiaoyutao Luo, Rongchan Zhu, Xiangchan Zhu
{"title":"Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise","authors":"Martina Hofmanová, Xiaoyutao Luo, Rongchan Zhu, Xiangchan Zhu","doi":"10.1007/s00208-024-02881-1","DOIUrl":null,"url":null,"abstract":"<p>We consider a family of singular surface quasi-geostrophic equations </p><span>$$\\begin{aligned} \\partial _{t}\\theta +u\\cdot \\nabla \\theta =-\\nu (-\\Delta )^{\\gamma /2}\\theta +(-\\Delta )^{\\alpha /2}\\xi ,\\qquad u=\\nabla ^{\\perp }(-\\Delta )^{-1/2}\\theta , \\end{aligned}$$</span><p>on <span>\\([0,\\infty )\\times {\\mathbb {T}}^{2}\\)</span>, where <span>\\(\\nu \\geqslant 0\\)</span>, <span>\\(\\gamma \\in [0,3/2)\\)</span>, <span>\\(\\alpha \\in [0,1/4)\\)</span> and <span>\\(\\xi \\)</span> is a space-time white noise. For the first time, we establish the <i>existence of infinitely many non-Gaussian</i></p><ul>\n<li>\n<p>probabilistically strong solutions for every initial condition in <span>\\(C^{\\eta }\\)</span>, <span>\\(\\eta &gt;1/2\\)</span>;</p>\n</li>\n<li>\n<p>ergodic stationary solutions.</p>\n</li>\n</ul><p> The result presents a single approach applicable in the subcritical, critical as well as supercritical regime in the sense of Hairer (Invent Math 198(2):269–504, 2014). It also applies in the particular setting <span>\\(\\alpha =\\gamma /2\\)</span> which formally possesses a Gaussian invariant measure. In our proof, we first introduce a modified Da Prato–Debussche trick which, on the one hand, permits to convert irregularity in time into irregularity in space and, on the other hand, increases the regularity of the linear solution. Second, we develop a convex integration iteration for the corresponding nonlinear equation which yields non-unique non-Gaussian solutions satisfying powerful global-in-time estimates and generating stationary as well as ergodic stationary solutions.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"116 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02881-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a family of singular surface quasi-geostrophic equations

$$\begin{aligned} \partial _{t}\theta +u\cdot \nabla \theta =-\nu (-\Delta )^{\gamma /2}\theta +(-\Delta )^{\alpha /2}\xi ,\qquad u=\nabla ^{\perp }(-\Delta )^{-1/2}\theta , \end{aligned}$$

on \([0,\infty )\times {\mathbb {T}}^{2}\), where \(\nu \geqslant 0\), \(\gamma \in [0,3/2)\), \(\alpha \in [0,1/4)\) and \(\xi \) is a space-time white noise. For the first time, we establish the existence of infinitely many non-Gaussian

  • probabilistically strong solutions for every initial condition in \(C^{\eta }\), \(\eta >1/2\);

  • ergodic stationary solutions.

The result presents a single approach applicable in the subcritical, critical as well as supercritical regime in the sense of Hairer (Invent Math 198(2):269–504, 2014). It also applies in the particular setting \(\alpha =\gamma /2\) which formally possesses a Gaussian invariant measure. In our proof, we first introduce a modified Da Prato–Debussche trick which, on the one hand, permits to convert irregularity in time into irregularity in space and, on the other hand, increases the regularity of the linear solution. Second, we develop a convex integration iteration for the corresponding nonlinear equation which yields non-unique non-Gaussian solutions satisfying powerful global-in-time estimates and generating stationary as well as ergodic stationary solutions.

受时空白噪声导数扰动的表面准地转方程
我们考虑奇异表面准地转方程组\theta =-\nu (-\Delta )^{\gamma /2}\theta +(-\Delta )^{\alpha /2}\xi ,\qquad u=\nabla ^\{perp }(-\Delta )^{-1/2}\theta 、\end{aligned}$on \([0,\infty )\times {mathbb {T}}^{2}\), where \(\nu \geqslant 0\), \(\gamma \in [0,3/2)\), \(\alpha \in [0,1/4)\) and\(\xi \) is a space-time white noise.对于 \(C^{\eta }\), \(\eta >1/2\) 中的每个初始条件,我们首次确定了无穷多个非高斯概率强解的存在;遍历静止解。该结果提出了一种适用于亚临界、临界以及海勒意义上的超临界机制的单一方法(Invent Math 198(2):269-504, 2014)。它也适用于形式上具有高斯不变度量的特殊设置(\α =\gamma /2/)。在我们的证明中,我们首先引入了一个改进的达普拉托-德布希技巧,它一方面允许将时间上的不规则性转换为空间上的不规则性,另一方面增加了线性解的正则性。其次,我们为相应的非线性方程开发了一种凸积分迭代,它能产生非唯一的非高斯解,满足强大的全局时间估计,并产生静态和遍历静态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信