T. E. Kuleshova, G. G. Panova, N. R. Gall, A. S. Galushko
{"title":"Concentration Cell Based on Electrogenic Processes in the Root Environment","authors":"T. E. Kuleshova, G. G. Panova, N. R. Gall, A. S. Galushko","doi":"10.1134/s1063785023900789","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The experimental bioelectrochemical current source based on the concentration gradient of charge carriers in the root environment of plants has been created. A potential difference of about 70 mV is observed in the nutrient solution. It is gradually decreasing due to equalization of concentrations. The voltage increases to 200 mV when plant are placed in a cultivation system as the root system develops due to the intensification of diffusion processes. The potential-forming role of nitrate forms of nitrogen is shown on the example of lettuce grown according to the panoponics technology. The separation of electrical charges by the root system during the life of plants can become an alternative source of green energy.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023900789","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The experimental bioelectrochemical current source based on the concentration gradient of charge carriers in the root environment of plants has been created. A potential difference of about 70 mV is observed in the nutrient solution. It is gradually decreasing due to equalization of concentrations. The voltage increases to 200 mV when plant are placed in a cultivation system as the root system develops due to the intensification of diffusion processes. The potential-forming role of nitrate forms of nitrogen is shown on the example of lettuce grown according to the panoponics technology. The separation of electrical charges by the root system during the life of plants can become an alternative source of green energy.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.