Chow motives of genus one fibrations

Pub Date : 2024-04-21 DOI:10.1007/s00229-024-01557-z
Daiki Kawabe
{"title":"Chow motives of genus one fibrations","authors":"Daiki Kawabe","doi":"10.1007/s00229-024-01557-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(f: X \\rightarrow C\\)</span> be a genus 1 fibration from a smooth projective surface, i.e. its generic fiber is a regular genus 1 curve. Let <span>\\(j: J \\rightarrow C\\)</span> be the Jacobian fibration of <i>f</i>. In this paper, we prove that the Chow motives of <i>X</i> and <i>J</i> are isomorphic. As an application, combined with our concomitant work on motives of quasi-elliptic fibrations, we prove Kimura finite-dimensionality for smooth projective surfaces not of general type with geometric genus 0. This generalizes Bloch–Kas–Lieberman’s result to arbitrary characteristic.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01557-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(f: X \rightarrow C\) be a genus 1 fibration from a smooth projective surface, i.e. its generic fiber is a regular genus 1 curve. Let \(j: J \rightarrow C\) be the Jacobian fibration of f. In this paper, we prove that the Chow motives of X and J are isomorphic. As an application, combined with our concomitant work on motives of quasi-elliptic fibrations, we prove Kimura finite-dimensionality for smooth projective surfaces not of general type with geometric genus 0. This generalizes Bloch–Kas–Lieberman’s result to arbitrary characteristic.

分享
查看原文
属一纤维的周动机
让 \(f: X \rightarrow C\) 是来自光滑投影面的属 1 纤维,即它的一般纤维是规则的属 1 曲线。让 \(j: J \rightarrow C\) 是 f 的雅各布纤维。在本文中,我们将证明 X 和 J 的周动机是同构的。作为应用,结合我们对准椭圆纤度的动机的研究,我们证明了几何属数为 0 的非一般类型光滑投影面的木村有限维性(Kimura finite-dimensionality),这将布洛赫-卡斯-利伯曼(Bloch-Kas-Lieberman)的结果推广到了任意特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信