Marcinkiewicz Estimates for Solutions of Some Elliptic Problems with Singular Data

IF 1 3区 数学 Q1 MATHEMATICS
Lucio Boccardo, Luigi Orsina
{"title":"Marcinkiewicz Estimates for Solutions of Some Elliptic Problems with Singular Data","authors":"Lucio Boccardo, Luigi Orsina","doi":"10.1007/s11118-024-10140-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove regularity result for solutions of the boundary value problem </p><span>$$ \\left\\{ \\begin{array}{cl} -{{\\,\\textrm{div}\\,}}(M(x)\\,\\nabla u) + u = -{{\\,\\textrm{div}\\,}}(u\\,E(x)) + f(x)\\,, &amp;{} \\text{ in }\\,\\, \\Omega , \\\\ u = 0\\,, &amp;{} \\text{ on }\\,\\,\\partial \\Omega , \\end{array} \\right. $$</span><p>with the vector field <i>E</i>(<i>x</i>) and the function <i>f</i>(<i>x</i>) belonging to some Marcinkiewicz spaces.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10140-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove regularity result for solutions of the boundary value problem

$$ \left\{ \begin{array}{cl} -{{\,\textrm{div}\,}}(M(x)\,\nabla u) + u = -{{\,\textrm{div}\,}}(u\,E(x)) + f(x)\,, &{} \text{ in }\,\, \Omega , \\ u = 0\,, &{} \text{ on }\,\,\partial \Omega , \end{array} \right. $$

with the vector field E(x) and the function f(x) belonging to some Marcinkiewicz spaces.

具有奇异数据的某些椭圆问题解的 Marcinkiewicz 估计数
本文证明了边界值问题解的正则性结果 $$ \left\{ \begin{array}{cl} -{\textrm{div}\,}}(M(x)\,\nabla u) + u = -{\textrm{div}\,}}(u\,E(x))+ f(x)\,, &{}\u = 0\,, &{}\text{ on }\,\partial\Omega , \end{array}\是的$$with the vector field E(x) and the function f(x) belonging to some Marcinkiewicz spaces.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信