Sign-changing solution for logarithmic elliptic equations with critical exponent

Pub Date : 2024-03-01 DOI:10.1007/s00229-024-01535-5
Tianhao Liu, Wenming Zou
{"title":"Sign-changing solution for logarithmic elliptic equations with critical exponent","authors":"Tianhao Liu, Wenming Zou","doi":"10.1007/s00229-024-01535-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the logarithmic elliptic equations with critical exponent </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u=\\lambda u+ |u|^{2^*-2}u+\\theta u\\log u^2, \\\\ u \\in H_0^1(\\Omega ), \\quad \\Omega \\subset {{\\mathbb {R}}}^N. \\end{array}\\right. \\end{aligned}$$</span><p>Here, the parameters <span>\\(N\\ge 6\\)</span>, <span>\\(\\lambda \\in {{\\mathbb {R}}}\\)</span>, <span>\\(\\theta &gt;0\\)</span> and <span>\\( 2^*=\\frac{2N}{N-2} \\)</span> is the Sobolev critical exponent. We prove the existence of a sign-changing solution with exactly two nodal domain for an arbitrary smooth bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^{N}\\)</span>. When <span>\\(\\Omega =B_R(0)\\)</span> is a ball, we also construct infinitely many radial sign-changing solutions with alternating signs and prescribed nodal characteristic.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01535-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the logarithmic elliptic equations with critical exponent

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u=\lambda u+ |u|^{2^*-2}u+\theta u\log u^2, \\ u \in H_0^1(\Omega ), \quad \Omega \subset {{\mathbb {R}}}^N. \end{array}\right. \end{aligned}$$

Here, the parameters \(N\ge 6\), \(\lambda \in {{\mathbb {R}}}\), \(\theta >0\) and \( 2^*=\frac{2N}{N-2} \) is the Sobolev critical exponent. We prove the existence of a sign-changing solution with exactly two nodal domain for an arbitrary smooth bounded domain \(\Omega \subset {\mathbb {R}}^{N}\). When \(\Omega =B_R(0)\) is a ball, we also construct infinitely many radial sign-changing solutions with alternating signs and prescribed nodal characteristic.

分享
查看原文
有临界指数的对数椭圆方程的符号变化解法
在本文中,我们考虑了临界指数为 $$\begin{aligned} 的对数椭圆方程-Delta u=\lambda u+ |u|^{2^*-2}u+\theta u\log u^2, \ u \in H_0^1(\Omega ), \quad \Omega \subset {{\mathbb {R}}}^N.\end{array}\right.\end{aligned}$$这里,参数(N\ge 6\)、(\lambda \in {{\mathbb {R}}})、(\theta >0\)和(2^*=\frac{2N}{N-2} \)是索博勒夫临界指数。我们证明了在任意光滑有界域 \(\Omega \subset {\mathbb {R}}^{N}\) 中存在一个恰好有两个结点域的符号变化解。当 \(\Omega =B_R(0)\) 是一个球时,我们还构造了无穷多个具有交替符号和规定结点特征的径向符号变化解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信