Maximum principles for elliptic operators in unbounded Riemannian domains

Andrea Bisterzo
{"title":"Maximum principles for elliptic operators in unbounded Riemannian domains","authors":"Andrea Bisterzo","doi":"10.1007/s00030-024-00951-6","DOIUrl":null,"url":null,"abstract":"<p>The necessity of a Maximum Principle arises naturally when one is interested in the study of qualitative properties of solutions to partial differential equations. In general, to ensure the validity of these kinds of principles one has to consider some additional assumptions on the ambient manifold or on the differential operator. The present work aims to address, using both of these approaches, the problem of proving Maximum Principles for second order, elliptic operators acting on unbounded Riemannian domains under Dirichlet boundary conditions. Hence there is a natural division of this article in two distinct and standalone sections.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00951-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The necessity of a Maximum Principle arises naturally when one is interested in the study of qualitative properties of solutions to partial differential equations. In general, to ensure the validity of these kinds of principles one has to consider some additional assumptions on the ambient manifold or on the differential operator. The present work aims to address, using both of these approaches, the problem of proving Maximum Principles for second order, elliptic operators acting on unbounded Riemannian domains under Dirichlet boundary conditions. Hence there is a natural division of this article in two distinct and standalone sections.

Abstract Image

无界黎曼域中椭圆算子的最大原则
当我们对偏微分方程解的定性研究感兴趣时,自然会产生最大原则的必要性。一般来说,为了确保这类原理的有效性,我们必须考虑环境流形或微分算子的一些额外假设。本研究旨在利用这两种方法,解决在狄利克特边界条件下,证明作用于无界黎曼域的二阶椭圆算子的最大原理问题。因此,本文自然分为两个不同的独立部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信