Smooth numbers and the Dickman ρ function

Ofir Gorodetsky
{"title":"Smooth numbers and the Dickman ρ function","authors":"Ofir Gorodetsky","doi":"10.1007/s11854-023-0328-6","DOIUrl":null,"url":null,"abstract":"<p>We establish an asymptotic formula for ψ(<i>x, y</i>) whose shape is <i>xρ</i>(log <i>x</i>/ log <i>y</i>) times correction factors. These factors take into account the contributions of zeta zeros and prime powers and the formula can be regarded as an (approximate) explicit formula for ψ(<i>x, y</i>). With this formula at hand we prove oscillation results for ψ(<i>x, y</i>), which resolve a question of Hildebrand on the range of validity of ψ(<i>x, y</i>) ≍ <i>xρ</i>(log <i>x</i>/ log <i>y</i>). We also address a question of Pomerance on the range of validity of ψ(<i>x, y</i>) ≥ <i>xρ</i>(log <i>x/</i> log <i>y</i>).</p><p>Along the way we improve classical estimates for ψ(<i>x, y</i>) and, on the Riemann Hypothesis, uncover an unexpected phase transition of ψ(<i>x, y</i>)at <i>y</i> = (log <i>x</i>)<sup>3/2+<i>o</i>(1)</sup>.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0328-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish an asymptotic formula for ψ(x, y) whose shape is (log x/ log y) times correction factors. These factors take into account the contributions of zeta zeros and prime powers and the formula can be regarded as an (approximate) explicit formula for ψ(x, y). With this formula at hand we prove oscillation results for ψ(x, y), which resolve a question of Hildebrand on the range of validity of ψ(x, y) ≍ (log x/ log y). We also address a question of Pomerance on the range of validity of ψ(x, y) ≥ (log x/ log y).

Along the way we improve classical estimates for ψ(x, y) and, on the Riemann Hypothesis, uncover an unexpected phase transition of ψ(x, y)at y = (log x)3/2+o(1).

平滑数和迪克曼 ρ 函数
我们建立了 ψ(x, y) 的渐近公式,其形状为 xρ(log x/ log y)乘以修正系数。这些系数考虑了zeta零点和素数幂的贡献,该公式可视为ψ(x,y)的(近似)显式公式。利用这个公式,我们证明了 ψ(x, y) 的振荡结果,解决了希尔德布兰德关于 ψ(x, y) ≍ xρ(log x/ log y) 有效范围的问题。我们还解决了波梅兰斯关于ψ(x, y) ≥ xρ(log x/ log y) 有效范围的问题。在此过程中,我们改进了对ψ(x, y) 的经典估计,并根据黎曼假设发现了ψ(x, y)在 y = (log x)3/2+o(1) 处的意外相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信