Whispy: Adapting STT Whisper Models to Real-Time Environments

Antonio Bevilacqua, Paolo Saviano, Alessandro Amirante, Simon Pietro Romano
{"title":"Whispy: Adapting STT Whisper Models to Real-Time Environments","authors":"Antonio Bevilacqua, Paolo Saviano, Alessandro Amirante, Simon Pietro Romano","doi":"arxiv-2405.03484","DOIUrl":null,"url":null,"abstract":"Large general-purpose transformer models have recently become the mainstay in\nthe realm of speech analysis. In particular, Whisper achieves state-of-the-art\nresults in relevant tasks such as speech recognition, translation, language\nidentification, and voice activity detection. However, Whisper models are not\ndesigned to be used in real-time conditions, and this limitation makes them\nunsuitable for a vast plethora of practical applications. In this paper, we\nintroduce Whispy, a system intended to bring live capabilities to the Whisper\npretrained models. As a result of a number of architectural optimisations,\nWhispy is able to consume live audio streams and generate high level, coherent\nvoice transcriptions, while still maintaining a low computational cost. We\nevaluate the performance of our system on a large repository of publicly\navailable speech datasets, investigating how the transcription mechanism\nintroduced by Whispy impacts on the Whisper output. Experimental results show\nhow Whispy excels in robustness, promptness, and accuracy.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large general-purpose transformer models have recently become the mainstay in the realm of speech analysis. In particular, Whisper achieves state-of-the-art results in relevant tasks such as speech recognition, translation, language identification, and voice activity detection. However, Whisper models are not designed to be used in real-time conditions, and this limitation makes them unsuitable for a vast plethora of practical applications. In this paper, we introduce Whispy, a system intended to bring live capabilities to the Whisper pretrained models. As a result of a number of architectural optimisations, Whispy is able to consume live audio streams and generate high level, coherent voice transcriptions, while still maintaining a low computational cost. We evaluate the performance of our system on a large repository of publicly available speech datasets, investigating how the transcription mechanism introduced by Whispy impacts on the Whisper output. Experimental results show how Whispy excels in robustness, promptness, and accuracy.
Whispy:根据实时环境调整 STT Whisper 模型
大型通用变压器模型最近已成为语音分析领域的主流。其中,Whisper 在语音识别、翻译、语言识别和语音活动检测等相关任务中取得了最先进的结果。然而,Whisper 模型并非设计用于实时条件下,这一局限性使其不适合大量的实际应用。在本文中,我们介绍了 Whispy,这是一个旨在为 Whisper 预测模型带来实时功能的系统。经过一系列架构优化后,Whispy 能够处理实时音频流,并生成高水平、连贯的语音转录,同时还能保持较低的计算成本。我们在一个大型公开语音数据集库中评估了系统的性能,研究了 Whispy 引入的转录机制对 Whisper 输出的影响。实验结果表明,Whispy 在鲁棒性、及时性和准确性方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信