Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers

Raghad Salameh, Mohamad Al Mdfaa, Nursultan Askarbekuly, Manuel Mazzara
{"title":"Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers","authors":"Raghad Salameh, Mohamad Al Mdfaa, Nursultan Askarbekuly, Manuel Mazzara","doi":"arxiv-2405.02675","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of learning to recite the Quran for\nnon-Arabic speakers. We explore the possibility of crowdsourcing a carefully\nannotated Quranic dataset, on top of which AI models can be built to simplify\nthe learning process. In particular, we use the volunteer-based crowdsourcing\ngenre and implement a crowdsourcing API to gather audio assets. We integrated\nthe API into an existing mobile application called NamazApp to collect audio\nrecitations. We developed a crowdsourcing platform called Quran Voice for\nannotating the gathered audio assets. As a result, we have collected around\n7000 Quranic recitations from a pool of 1287 participants across more than 11\nnon-Arabic countries, and we have annotated 1166 recitations from the dataset\nin six categories. We have achieved a crowd accuracy of 0.77, an inter-rater\nagreement of 0.63 between the annotators, and 0.89 between the labels assigned\nby the algorithm and the expert judgments.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenge of learning to recite the Quran for non-Arabic speakers. We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process. In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets. We integrated the API into an existing mobile application called NamazApp to collect audio recitations. We developed a crowdsourcing platform called Quran Voice for annotating the gathered audio assets. As a result, we have collected around 7000 Quranic recitations from a pool of 1287 participants across more than 11 non-Arabic countries, and we have annotated 1166 recitations from the dataset in six categories. We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments.
古兰经音频数据集:来自非阿拉伯语发言人的众包和标签化朗诵
本文探讨了非阿拉伯语使用者学习背诵《古兰经》所面临的挑战。我们探索了众包精心注释的古兰经数据集的可能性,在此基础上可以建立人工智能模型来简化学习过程。特别是,我们使用了基于志愿者的众包领域,并实施了一个众包应用程序接口(API)来收集音频资产。我们将应用程序接口集成到现有的移动应用程序 "NamazApp "中,以收集音频吟诵。我们开发了一个名为 "古兰经之声 "的众包平台,用于对收集到的音频资产进行注释。因此,我们从超过 11 个非阿拉伯国家的 1287 名参与者中收集了约 7000 篇古兰经诵读内容,并对数据集中的 1166 篇诵读内容进行了六类注释。我们的人群准确率达到了 0.77,注释者之间的互评准确率为 0.63,算法分配的标签与专家判断之间的准确率为 0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信