Synthesis of Sodalite Zeolite from Alkaline Fusion of Kaolin and Crystallization at Low Temperature and Ambient Pressure

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Eliomar Pivante Céleri, Carmem Cícera Maria da Silva, Valdemar Lacerda Jr, Audrei Giménez Barañano
{"title":"Synthesis of Sodalite Zeolite from Alkaline Fusion of Kaolin and Crystallization at Low Temperature and Ambient Pressure","authors":"Eliomar Pivante Céleri, Carmem Cícera Maria da Silva, Valdemar Lacerda Jr, Audrei Giménez Barañano","doi":"10.1007/s43153-024-00455-x","DOIUrl":null,"url":null,"abstract":"<p>In this study, a sodalite-type zeolite (SOD) was synthesized through the alkaline fusion of kaolin and crystallized under ambient pressure conditions, without the need for autoclaves and high temperatures. The influence of the ratio between fused kaolin and water (g/mL) during crystallization was evaluated. The ratio of fused kaolin with NaOH to water at 1:10 g/mL resulted in the synthesis of zeolite with higher relative crystallinity (70.99%), which was affected by the concomitant formation of thermonatrite phase. Additionally, the zeolite showed a Si/Al ratio of 0.95 and Na/Al ratio of 1.00, and the aluminum atoms exhibited a configuration of perfect tetrahedra. Due to the absence of octahedral aluminum in the zeolitic structure and the charge-balancing cations being Na<sup>+</sup> ions, the zeolite presented itself as a basic solid.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00455-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a sodalite-type zeolite (SOD) was synthesized through the alkaline fusion of kaolin and crystallized under ambient pressure conditions, without the need for autoclaves and high temperatures. The influence of the ratio between fused kaolin and water (g/mL) during crystallization was evaluated. The ratio of fused kaolin with NaOH to water at 1:10 g/mL resulted in the synthesis of zeolite with higher relative crystallinity (70.99%), which was affected by the concomitant formation of thermonatrite phase. Additionally, the zeolite showed a Si/Al ratio of 0.95 and Na/Al ratio of 1.00, and the aluminum atoms exhibited a configuration of perfect tetrahedra. Due to the absence of octahedral aluminum in the zeolitic structure and the charge-balancing cations being Na+ ions, the zeolite presented itself as a basic solid.

Abstract Image

利用高岭土的碱性熔融和低温常压结晶合成钠长石沸石
本研究通过碱熔高岭土合成了钠长石型沸石(SOD),并在常压条件下结晶,无需高压灭菌器和高温。对结晶过程中熔融高岭土与水的比例(克/毫升)的影响进行了评估。熔融高岭土与 NaOH 和水的比例为 1:10 g/mL,合成的沸石相对结晶度较高(70.99%),但受同时形成的热沸石相的影响。此外,沸石的 Si/Al 比率为 0.95,Na/Al 比率为 1.00,铝原子呈现完美的四面体构型。由于沸石结构中不存在八面体铝,且电荷平衡阳离子为 Na+ 离子,因此沸石呈现为碱性固体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信