Special cubulation of strict hyperbolization

IF 2.6 1区 数学 Q1 MATHEMATICS
Jean-François Lafont, Lorenzo Ruffoni
{"title":"Special cubulation of strict hyperbolization","authors":"Jean-François Lafont, Lorenzo Ruffoni","doi":"10.1007/s00222-024-01241-9","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual <span>\\(\\operatorname {CAT}(0)\\)</span> cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"80 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01241-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual \(\operatorname {CAT}(0)\) cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.

Abstract Image

严格双曲面的特殊立方体
我们证明,通过查尼和戴维斯的严格超布尔化过程得到的格罗莫夫超布尔群是实际上紧凑的特殊群,因此是线性的和残差有限的。我们的策略是在某个对偶(operatorname {CAT}(0)\)立方复数上构造一个双曲化群的作用。结果表明,严格超布尔化的所有常见应用都能提供具有几乎紧凑的特殊基群的流形。特别是,我们得到了一些封闭负弯黎曼流形的例子,这些流形的基群是线性的,并且实际上是代数纤维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信