{"title":"Geometric Approach to Solar Panels","authors":"Layth M. Alabdulsada","doi":"10.1007/s42835-024-01905-9","DOIUrl":null,"url":null,"abstract":"<p>This paper explores two critical aspects of solar panel tracking systems and quantifies their outcomes. Firstly, we tackle the issue of slow tracking performance in traditional solar panels by implementing time-optimal theory. We introduce an adaptive model following control, which significantly improves tracking speed, yielding concrete numerical results. We also calculate the tracking time, assuming the tracking actuator follows the trajectory well. In the second part of our study, we use MATLAB Simulink to model solar panels that actively follow the sun for maximum electricity production. To minimize positioning errors during solar tracking, a dedicated controller adjusts motor voltage, resulting in precise alignment with the sun. Our research produces quantitative data demonstrating enhanced tracking efficiency, reduced tracking time, and increased electricity generation. These findings contribute valuable insights to the field of solar panel tracking, offering tangible solutions for optimizing solar energy utilization.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":"14 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42835-024-01905-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores two critical aspects of solar panel tracking systems and quantifies their outcomes. Firstly, we tackle the issue of slow tracking performance in traditional solar panels by implementing time-optimal theory. We introduce an adaptive model following control, which significantly improves tracking speed, yielding concrete numerical results. We also calculate the tracking time, assuming the tracking actuator follows the trajectory well. In the second part of our study, we use MATLAB Simulink to model solar panels that actively follow the sun for maximum electricity production. To minimize positioning errors during solar tracking, a dedicated controller adjusts motor voltage, resulting in precise alignment with the sun. Our research produces quantitative data demonstrating enhanced tracking efficiency, reduced tracking time, and increased electricity generation. These findings contribute valuable insights to the field of solar panel tracking, offering tangible solutions for optimizing solar energy utilization.
期刊介绍:
ournal of Electrical Engineering and Technology (JEET), which is the official publication of the Korean Institute of Electrical Engineers (KIEE) being published bimonthly, released the first issue in March 2006.The journal is open to submission from scholars and experts in the wide areas of electrical engineering technologies.
The scope of the journal includes all issues in the field of Electrical Engineering and Technology. Included are techniques for electrical power engineering, electrical machinery and energy conversion systems, electrophysics and applications, information and controls.