{"title":"Effective equidistribution for multiplicative Diophantine approximation on lines","authors":"Sam Chow, Lei Yang","doi":"10.1007/s00222-023-01233-1","DOIUrl":null,"url":null,"abstract":"<p>Given any line in the plane, we strengthen the Littlewood conjecture by two logarithms for almost every point on the line, thereby generalising the fibre result of Beresnevich, Haynes, and Velani. To achieve this, we prove an effective asymptotic equidistribution result for one-parameter unipotent orbits in <span>\\({\\mathrm{SL}}(3, {\\mathbb{R}})/{\\mathrm{SL}}(3,{\\mathbb{Z}})\\)</span>. We also provide a complementary convergence statement, by developing the structural theory of dual Bohr sets: at the cost of a slightly stronger Diophantine assumption, this sharpens a result of Kleinbock’s from 2003. Finally, we refine the theory of logarithm laws in homogeneous spaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01233-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Given any line in the plane, we strengthen the Littlewood conjecture by two logarithms for almost every point on the line, thereby generalising the fibre result of Beresnevich, Haynes, and Velani. To achieve this, we prove an effective asymptotic equidistribution result for one-parameter unipotent orbits in \({\mathrm{SL}}(3, {\mathbb{R}})/{\mathrm{SL}}(3,{\mathbb{Z}})\). We also provide a complementary convergence statement, by developing the structural theory of dual Bohr sets: at the cost of a slightly stronger Diophantine assumption, this sharpens a result of Kleinbock’s from 2003. Finally, we refine the theory of logarithm laws in homogeneous spaces.