Effective equidistribution for multiplicative Diophantine approximation on lines

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sam Chow, Lei Yang
{"title":"Effective equidistribution for multiplicative Diophantine approximation on lines","authors":"Sam Chow, Lei Yang","doi":"10.1007/s00222-023-01233-1","DOIUrl":null,"url":null,"abstract":"<p>Given any line in the plane, we strengthen the Littlewood conjecture by two logarithms for almost every point on the line, thereby generalising the fibre result of Beresnevich, Haynes, and Velani. To achieve this, we prove an effective asymptotic equidistribution result for one-parameter unipotent orbits in <span>\\({\\mathrm{SL}}(3, {\\mathbb{R}})/{\\mathrm{SL}}(3,{\\mathbb{Z}})\\)</span>. We also provide a complementary convergence statement, by developing the structural theory of dual Bohr sets: at the cost of a slightly stronger Diophantine assumption, this sharpens a result of Kleinbock’s from 2003. Finally, we refine the theory of logarithm laws in homogeneous spaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01233-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Given any line in the plane, we strengthen the Littlewood conjecture by two logarithms for almost every point on the line, thereby generalising the fibre result of Beresnevich, Haynes, and Velani. To achieve this, we prove an effective asymptotic equidistribution result for one-parameter unipotent orbits in \({\mathrm{SL}}(3, {\mathbb{R}})/{\mathrm{SL}}(3,{\mathbb{Z}})\). We also provide a complementary convergence statement, by developing the structural theory of dual Bohr sets: at the cost of a slightly stronger Diophantine assumption, this sharpens a result of Kleinbock’s from 2003. Finally, we refine the theory of logarithm laws in homogeneous spaces.

线段上乘法二叉近似的有效等差数列
给定平面中的任意一条直线,我们通过对直线上几乎每一点的两个对数来加强利特尔伍德猜想,从而推广了贝尔斯内维奇、海恩斯和维拉尼的纤维结果。为此,我们证明了在\({\mathrm{SL}}(3, {\mathbb{R}})/{\mathrm{SL}}(3,{\mathbb{Z}})\) 中单参数单能轨道的有效渐近等分布结果。通过发展对偶玻尔集合的结构理论,我们还提供了一个补充性的收敛声明:以一个稍强的 Diophantine 假设为代价,这使克莱因博克在 2003 年的一个结果更加清晰。最后,我们完善了同质空间中的对数定律理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信